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Abstract

This thesis develops aspects of the theory of reinforcement learning using the notion of

probabilistic couplings. We provide a unifying framework which is suitable for demon-

strating: (1) behavioural equivalence of states in Markov decision processes (MDPs), and

(2) convergence and equivalence of stochastic approximation algorithms. A unifying

theme is that the presence (or lack thereof) of specific couplings between state transition

distributions incurs knowledge about their long-term behaviours.

The first application of our methods is the construction of temporally extended metrics for

measuring behavioural similarity of states in MDPs. The temporally extended metrics

extend a base metric between states (e.g. reward difference or value difference) so as to

reflect not just the current difference but the extent to which the difference is preserved

throughout the course of transitions. The construction is based on a generalized notion

of bisimulation given in terms of probabilistic couplings. We provide safety bounds on

the approximation error incurred when using these metrics for state abstraction.

In the second application, we propose a distributional perspective on stochastic approx-

imation theory for RL by working at the level of distributions of possible function esti-

mates. In this framework, simple couplings can be exhibited to show that many commonly-

used value-based RL algorithms are contractions on the space of distributions, and thus

that they converge to stationary distributions. We provide general criteria for conver-

gence, and characterize the attained limit distributions. The proof methods generalize

and simplify existing arguments in the literature.



Résumé

Cette thèse développe des aspects de la théorie de l’apprentissage par renforcement (en

anglais reinforcement learning, RL) en utilisant la notion de couplage probabiliste. Nous

fournissons un cadre unificateur qui convient pour démontrer: (1) l’équivalence com-

portementale d’états dans les processus de décision Markovien (en anglais Markov deci-

sion process, MDP), et (2) la convergence et l’équivalence des algorithmes d’approximation

stochastique. Un thème unificateur est que la présence (ou l’absence) de couplages

spécifiques entre les distributions de transition d’état implique la connaissance de leurs

comportements à long terme. La première application de nos méthodes est la construc-

tion de métriques étendues dans le temps (en anglais temporally extended metrics) pour

mesurer la similarité comportementale d’états dans les MDP. Les métriques étendues

dans le temps étendent une métrique de base entre états (par exemple, une différence de

récompense ou une différence de valeur) de manière à refléter non seulement la différence

actuelle, mais également la mesure dans laquelle la différence est préservée au cours

des transitions. La construction est basée sur une notion généralisée de bisimulation

donnée en termes de couplages probabilistes. Nous fournissons des bornes de sécurité

sur l’erreur d’approximation lors de l’utilisation de ces métriques pour l’abstraction

d’état. Dans la seconde application, nous proposons une perspective distributionnelle

de la théorie de l’approximation stochastique en travaillant au niveau des distributions

d’estimations de fonction possibles. Dans ce cadre, des couplages simples peuvent être

présentés pour montrer que de nombreux algorithmes RL basés sur l’estimation des

valeurs sont des contractions sur l’espace des distributions et donc convergent vers des

distributions stationnaires. Nous fournissons des critères généraux de convergence et



caractérisons les distributions limites atteintes. Les méthodes de preuve généralisent et

simplifient les arguments existants dans la littérature.
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Chapter 1

Introduction

Modern machine learning inevitably deals with stochasticity: data is generated by sam-

pling from an unknown distribution and the analysis of said data is often done by stochas-

tic algorithms. In reinforcement learning (RL), we further deal with the problem of se-

quential decision-making in a changing and stochastic environment. Thus, reasoning

about uncertainty and the behaviour of stochastic transition systems lies at the heart of

RL.

In this thesis we develop some aspects of the theory of RL using the notion of probabilistic

coupling. The coupling method is a long-studied and invaluable tool in probability theory,

where it exhibits a wealth of applications and a rich literature (Lindvall 2002; Thorisson

2000). Couplings have recently received some attention in the broader machine learn-

ing literature via applications of optimal transport and the Wasserstein metric (Arjovsky,

Chintala, and Bottou 2017; Bellemare, Dabney, and Munos 2017). However, these are

mainly introduced as metrics to be optimized, and the deeper properties of couplings

(which makes them useful as a proof strategy) are rarely exploited. Loosely, a proof by

coupling consists of comparing two stochastic processes by correlating their sources of
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randomness and thus simplifying deductions about the original processes. Paraphras-

ing from Hsu: proofs by coupling simplify probabilistic reasoning by reducing to one

source of randomness, abstracting away probabilities, and enabling compositional, struc-

tured reasoning (Hsu 2017). Indeed, proofs by coupling have recently emerged in the

differential privacy and formal verification communities (Barthe et al. 2016), where they

have simplified existing arguments that were often subtly incorrect (Ding et al. 2018).

This thesis shows that similar room for improvement exists in the RL literature: proofs

of convergence (primarily based on stochastic approximation theory) are often elaborate

and intricate, and furthermore have to be tailored to individual algorithms. We suggest

that coupling methods can provide a unifying framework and simplify existing results.

Namely, we show that the existence of a particular coupling between two arbitrary ini-

tializations of the same algorithm is enough to enable proofs of convergence for many

commonly-used RL algorithms (cf. Section 5).

We demonstrate the effectiveness of couplings in RL by showing that the existence of

specific couplings can directly imply relational properties about states in Markov Deci-

sion Processes (to be used for state abstraction) or even about different RL algorithms

(to be used for convergence analyses). More concretely, we provide a single theoretical

framework which can be used to show: (1) behavioural equivalence of states in MDPs (via

bisimulation-like properties), (2) behavioural equivalence of RL algorithms, and (3) con-

vergence guarantees of RL algorithms (via contraction arguments on the distribution of

possible iterates). We now provide, in more detail, an overview of these 3 contributions.
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1.1 Contributions

Temporally Extended Metrics: State Abstraction via Couplings (Ch. 3)

If two states of an MDP are related in some way, how can we verify that, after performing

any number of transitions, the new states will continue to be related? In this chapter we

formalize such a notion of state equivalence based on couplings, which can be defined

for any given relation of interest. We discuss its applications to state abstraction methods,

by considering relations based on (approximate) reward equality or (approximate) value

equality of states. A long-studied notion for state abstractions in a Markov Decision Pro-

cess (MDP) is called bisimulation. There also exists quantitative analogues called bisimu-

lation metrics. However, these metrics are prohibitively expensive to compute which has

limited their applicability. We instead propose alternative metrics for behavioural equiv-

alence by developing a notion of temporally extended metrics, which extend a base metric

between states of an environment so as to reflect not just the current difference but the ex-

tent to which the distance is preserved through the course of transitions. We further show

that this property is not satisfied by the bisimulation metrics. The construction relies on

a generalized notion of bisimulation relations, which is based on couplings and consid-

ers arbitrary comparisons between states instead of strict reward matching. A temporal

extension can be defined for any base metric of interest which makes the construction

very flexible. The kernel of the temporally extended metrics corresponds precisely to ex-

act bisimulation, thus assigning distance 0 only to states which are indistinguishable. We

provide bounds relating bisimulation and temporally extended metrics and also examine

the couplings of state distributions which are induced.
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Bisimulation of algorithms: Distributional RL vs. Expected RL (Ch. 4)

The distributional family of reinforcement learning algorithms have produced state-of-

the-art empirical results, however the theoretical properties responsible for the improve-

ments over their expected-value counterparts are not clearly understood. In this short sec-

tion, we use the tools developed in Chapter 3 to establish the equivalence (in expectation)

of the distributional family of reinforcement learning algorithms with their expected-

value counterparts. The bridge from the previous work comes from casting these algo-

rithms as Markov processes in their own right by considering the time-evolution of the

distribution of possible value function estimates induced by the possible samples of the al-

gorithms. In this framework one can then use the same coupling-based techniques. In

particular we formalize a notion of bisimulation for algorithms, which can be used to deter-

mine if two algorithms are behaviourally identical. We verify that, in the tabular setting,

the distributional and expected versions of the SARSA algorithm are bisimilar. These re-

sults rephrase a recent paper by (Lyle, Castro, and Bellemare 2019). However, we wish

to emphasize the novel use of couplings and bisimulation techniques for the analysis of

these algorithms. Bisimulation, in particular, has previously only been viewed as a rela-

tion for state abstraction of states in MDPs.

Distributional Stochastic Approximation: Convergence via Couplings (Ch. 5)

Our last contribution establishes convergence in distribution of a wide class of commonly

used value-based RL algorithms when using synchronous updates and constant step-

sizes. We exploit the Markov process view described in Chapter 4, and work at the level of

distribution of possible value function estimates. We show that many common RL algorithms

induce Markov kernels which are contractions on the space of distributions. This property

holds true whenever a certain coupling can be constructed. Our proofs by coupling are
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simpler than existing stochastic approximation-based methods, showing promise that the

methods can be extended to further analyses. We provide general criteria guaranteeing

contraction (and thus convergence to a stationary distribution), and further provide a

characterization of the attained stationary distribution.
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Chapter 2

Background

In reinforcement learning (RL), we consider an agent interacting with an environment to

accomplish some high-level task, and wish for the agent to arrive at some understanding

of which behaviour to adopt in order to optimize performance measures indicative of its

performance relative to the given task. Interactions between the agent and the environ-

ment are very commonly formalized as Markov Decision Processes (MDPs).

2.1 Markov Decision Processes

We write P(X ) for the set of probability measures on a set X .

Definition 2.1 (Markov Decision Process (Puterman 2014)). A Markov Decision Process

(MDP) is a tupleM = 〈S,A,R,P , γ〉where

• S is a state space

• A is an action space

• R : S ×A → R≥0 is a reward function
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• P : S ×A →P(S) is a probabilistic transition function

• γ ∈ (0, 1) is a discount factor

The semantics of an MDP are to be interpreted as follows: the agent moves around the

state space S, which consists of the possible configurations of an environment of interest.

The agent interacts with the environment at a particular state s ∈ S by choosing an action

a ∈ A, which in turn provides a rewardR(s, a) ∈ R≥0 and (stochastically) transitions the

agent to a new state s′ ∼ P(·|s, a). In this work we will assume that S and A are finite,

and that the reward function is bounded by some constant RMAX.

As MDPs are Markovian by construction, an agent need only know their current state

(rather than how they got there) in order to decide on a course of action. The strategy of

the agent is captured by a policy π : S → P(A), which (stochastically) chooses actions

based on the current state1. For a fixed policy π, the dynamics can also be seen to form a

Markov chain with transition kernel Pπ(s′|s) :=
∑

a π(a|s)P(s′|s, a).

The task of an agent is to pick a sequence of actions so as to maximize its lifetime sum of

rewards. The sum of rewards collected by an agent throughout its trajectory is called the

return. In this thesis we are concerned with infinite horizon problems, where the agent is

tasked with maximizing rewards over infinite trajectories. In infinite horizon problems,

future rewards are exponentially weighted by γ. The agent, then, seeks to pick a sequence

of actions so as to maximize its expected discounted return. For each π we define a value

function V π : S → R≥0 which assigns to each state the expected discounted return that

the agent receives when starting at the state and following the policy π and the dynamics

of the MDP:

V π(s) := EP,π

[
∞∑
t=0

γtR(st, at) | s0 = s

]
,

1In general the policies could be time-dependent as well, but as we will see it is enough to consider

stationary (time-independent) policies.
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where EP,π denotes the expectations of random trajectories (s0, a0, s1, a1, ...) defined in-

ductively by ai ∼ π(·|si) and si+1 ∼ P(·|si, ai).

The optimal policy π? is that which maximizes expected discounted returns for every

state, i.e. V π?(s) ≥ V π(s) for every π and s ∈ S . In this setting, there always exists an op-

timal policy π? which is deterministic and stationary (Puterman 2014). The value function

for the optimal policy will simply be written as V ? := V π? .

A closely related object is the action-value function of a policy π, which is defined over

state-action pairs. The action-value function Qπ : S ×A → R≥0 is defined as the value of

first taking action a and thereafter following policy π:

Qπ(s, a) = EP,π

[
∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
.

We note that the value function can be recovered from the action-value function (and

vice-versa) via the relations

V π(s) =
∑
a

π(a|s)Qπ(s, a)

Qπ(s, a) = R(s, a) + γ
∑
s′

P(s′|s, a)V π(s′).

Given the optimal action-value function Q?, one can recover an optimal policy π? by sim-

ply taking greedy actions at every state, i.e.:

π?(s) = argmax
a∈A

Q?(s, a),

and thus solving for the optimal policy boils down to finding the optimal value function

or action-value function.

Given a sum of discounted rewards observed during a trajectory, we can “chop up“ the

time-steps of the trajectory in two components: the immediate reward under policy π,

and the sum of discounted rewards when starting from the next state. Of course, the sum
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of discounted rewards when starting from the next state is exactly the value function for

that state! This leads to a recursive equation for V π – the famous Bellman equation:

V π(s) =
∑
a∈A

π(a|s)

{
R(s, a) + γ

∑
s′∈S

P(s′|s, a)V π(s′)

}
= Rπ(s) + γ

∑
s′∈S

Pπ(s′|s)V π(s′), (2.1)

where we introduced the notation Rπ(s) = Ea∼π(·|s) [R(s, a)]. There is a corresponding

equation for action-value functions: Qπ(s, a) = R(s, a) + γ
∑

s′∈S P(s′|s, a)V π(s′). For the

optimal value and optimal action-value functions, there are analogous Bellman optimality

equations:

V ?(s) = max
a

{
R(s, a) + γ

∑
s′∈S

P(s′|s, a)V ?(s′)

}
(2.2)

Q?(s, a) = R(s, a) + γ
∑
s′∈S

P(s′|s, a)V ?(s′)

The optimality equations can be readily derived by recalling that the optimal policy is

greedy with respect to Q?, and using V ?(s) = maxaQ
?(s, a).

Since S and A are finite sets, we can view value functions as vectors over R|S|. We will

writeRπ = [Rπ(s)]s ∈ R|S| as the corresponding vector of rewards andPπ = [Pπ(s′|s)]s,s′ ∈[
R|S| → R|S|

]
for the probability matrix of transitions.2 In vector form, equation (2.1) be-

comes

V π = Rπ + γPπV π (2.3)

This is simply a linear system of equations, which can be solved as V π = (I|S|−γPπ)−1Rπ

(the matrix I|S| − γPπ is invertible since Pπ is a stochastic matrix (Puterman 2014, Corol-

lary C.4)).3 Of course, even if Pπ and Rπ were known, computing this matrix inverse is
2[A→ B] is the set of functions f : A→ B.
3In is the identity matrix on Rn×n
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prohibitively expensive in most applications since naı̈ve matrix multiplication is of order

O(|S|3). To bypass this issue, we can introduce an operator (suitably called the Bellman

operator) which will allow us to iteratively solve the Bellman equations.

2.2 Bellman Equations and Dynamic Programming

The Bellman operator T π : R|S| → R|S| for a policy π is the affine transformation given by

T πV = Rπ + γPπV.

There also exists an analogous Bellman optimality operator T ? : R|S| → R|S| defined by

T ?V = max
π
T πV.

Then, determining the value function for policy π or the optimal value function boil down

to solving the fixed point equations

V π = T πV π or V ? = T ?V ?,

respectively. The advantage of this formulation is that one can use tools from fixed-point

theory. One such tool, particularly prevalent and useful in RL, is the Banach Fixed Point

Theorem (Banach 1922). A complete metric space (X , d) is a metric space in which every

Cauchy sequence converges to a point in X . A contraction mapping f : X → X satisfies

d(f(x), f(y)) ≤ αd(x, y) for each x, y ∈ X and for some α < 1.

Theorem 2.1 (Banach Fixed Point Theorem). Let (X , d) be a complete metric space and f be

an α-contraction mapping. Then f has a unique fixed point f(x?) = x?.

Furthermore, for any x0 ∈ X , the sequence fn(x0)
n→∞−−−→ x? and

d (x?, fn(x0)) ≤ αn

1− α
d (x0, f(x0))
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It turns out that the Bellman operator and Bellman optimality operator are γ-contractions

with respect to the max-norm (i.e. `∞ norm) ‖v‖∞ = max
s∈S
|v(s)|.

Corollary 2.1.1. Let V0 ∈ R|S|. Then the following sequences converge uniformly at a geometric

rate:

(T π)nV0
n→∞−−−→ V π (PE)

(T ?)nV0
n→∞−−−→ V ? (VI)

These two updates are called Policy Evaluation and Value Iteration, respectively. Policy

Evaluation repeatedly applies the Bellman operator T π in order to evaluate the value of a

candidate policy π. To find the optimal value function using Policy Evaluation, we per-

form a Policy Improvement step after evaluation, which updates the policy to be greedy

with respect to the recently-evaluated value function. Alternating Policy Evaluation and

Policy Improvement leads to a monotonic improvement of the policies at every step, from

which convergence to the optimal policy follows. On the other hand, Value Iteration

directly applies the optimality operator until convergence to V ? is attained. These two

methods belong to the Dynamic Programming (DP) family of algorithms (Bellman 1966).

2.3 Value-based Reinforcement Learning

In the previous section, we saw DP algorithms which solve for the optimal policy when a

full specification of an MDP was given. The main challenges encountered here are compu-

tational: the algorithms scale poorly to large state and action spaces (the so-called “curse

of dimensionality”(Bellman 1966)). Furthermore, in practice, one is unlikely to be given

a full specification of the environment. This is the realm of reinforcement learning, which

deals with the problem of solving an MDP when the MDP is not given (that is, the tran-

sition and reward functions are not known in advance).
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There exists a wide class of RL methods, only some of which we can cover here. We

will focus on value-based methods for solving MDPs, which attempt to iteratively solve

or approximate value functions V π/? or action-value functionQπ/?. To bypass computing

the expectation in the Bellman equation, most RL algorithms are sampling-based. In other

words, value functions must be learned via trial-and-error by collecting trajectories from

the environment. All algorithms under consideration will adopt the form (Sutton and

Barto 1998):

NewEstimate← (1− StepSize)× OldEstimate + StepSize× Target (2.4)

Algorithms fall in one of two categories: evaluation for evaluating the (action-)value func-

tion of a policy, or control for estimating the optimal (action-)value function. We present

the basic tool-kit of value-based methods. We will consider synchronous updates, where

every state is updated at every iteration.

Monte Carlo Evaluation

In Monte Carlo algorithms, the targets are given by the discounted sum of rewards col-

lected during a sample trajectory under policy π. Such a discounted sum of rewards will

also be called a sample return. The algorithm iteratively updates in the following manner:

Vk+1(s) = (1− αk)Vk(s) + αkG
π
k(s), (MCE)

where Gπ
k(s) is a random discounted return starting at state s and following policy π. In

the case of αk = 1/k, the kth iteration of a Monte Carlo algorithm is simply the average

return of k independent trajectories. As k →∞, by the strong law of large numbers, these

averages will converge to the true value function V π (Bertsekas and Tsitsiklis 1996).

Temporal-Difference Learning

In the Temporal-Difference family of methods, we bootstrap from current estimates rather
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than collecting complete trajectories. The algorithms evaluate a value function for a given

policy π. The simplest algorithm, TD(0), has the following updates:

Vk+1(s) = (1− α)Vk(s) + α (R(s, a) + γVk(s
′))

a ∼ π(·|s)

s′ ∼ P(·|s, a)
(TD(0))

Interpolating between Monte Carlo methods and TD(0), we have the TD(λ) algorithm.

The TD(λ) algorithm, for λ ∈ [0, 1] is a weighted average of n-step returns:

Vk+1(s) = (1− α)Vk(s) + α(1− λ)
∞∑
n=1

λn−1
( n∑
i=0

γiR(si, ai) + γnVk(sn)︸ ︷︷ ︸
n-step return

)
, (TD(λ))

where (s, a0, s1, a1, ...) is a trajectory collected from the environment by following the pol-

icy. Taking λ = 1 recovers the Monte Carlo method.

SARSA

For evaluating action-value functions for a policy π, we have the SARSA algorithm:

Qk+1(s, a) = (1− α)Qk(s, a) + α (R(s, a) + γQk(s
′, a′))

s′ ∼ P(·|s, a)

a′ ∼ π(·|s′)
(SARSA)

Q-Learning

Finally, for learning the optimal action-value function Q?, we have the Q-Learning algo-

rithm:

Qk+1(s, a) = (1−α)Qk(s, a)+α
(
R(s, a) + γmax

a′
Qk(s

′, a′)
)

s′ ∼ P(·|s, a) (Q-Learning)

2.4 Optimal Transport and the Coupling Method

We provide some necessary mathematical background on couplings and optimal trans-

port, which will be invaluable in proceeding sections.
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Definition 2.2 (Couplings). Let µ ∈ P(X ), ν ∈ P(Y) be two probability measures over

a space X and Y , respectively. A coupling of µ and ν is a joint distribution λ ∈P(X ×Y)

such that the marginals of λ are µ and ν, respectively. Formally, for every measurable set

A of X and B of Y :

λ(A× Y) = µ(A) & ν(B) = λ(X × B).

For finite spaces this can be rewritten as:∑
y∈Y

λ(x, y) = µ(x) & ν(y) =
∑
x∈X

λ(x, y),

for each x ∈ X , y ∈ Y . In the language of random variables, a pair (X, Y ) is a coupling of

(µ, ν) if X ∼ µ and Y ∼ ν.

Roughly speaking, the intuition is that the random variables X and Y can be correlated,

however when we ignore the behaviour of Y (resp. X) by integrating over it’s behaviour,

X (resp. Y ) must respect the original distribution. The set of couplings for two distri-

butions (µ, ν) is denoted by Λ(µ, ν). The set is always non-empty, and many possible

couplings can exist for a given pair of measures. In particular, the independent coupling

λ(A × B) = µ(A)ν(B) always exists. As the name suggests, the independent coupling

is equivalent to assuming that the two measures are independent: the probability of the

pair (x, x′) occurring under the coupling is simply the probability of x occurring under

µ times the probability of x′ occurring under ν. On the other end of the spectrum, the

diagonal coupling λ(x, x′) = 1[x=x′]µ(x) = 1[x=x′]ν(x′) is the “strongest” possible coupling:

µ(·) samples x if and only if ν(·) does, and vice-versa!4

Another important coupling is the optimal coupling. Supposing we had a cost function

d(x, y) onX×X (for our purposes we will always think of cost functions simply as metrics
4
1A(x) denotes the indicator function of a set A
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on X ), the optimal coupling is the one which minimizes the transport problem

inf
λ∈Λ(µ,ν)

∫
X×X

d(x, x′)λ(dx , dx′) = inf
(X,Y )∈Λ(µ,ν)

E d(X, Y )

When the cost function is a metric, the transport problem above is a metric in its own

right, which is called the Wasserstein metric.5 A Wasserstein distance can be defined for any

base metric, thus we define the functionalW(d)(µ, ν) := infλ∈Λ(µ,ν)

∫
X×X d(x, x′)λ(dx , dx′)

which maps a base metric to its associated optimal transport problem. The functional

maps a metric between elements of X to a metric between distributions on elements of X

– we say that it lifts the metric. We will revisit the concept of liftings in Chapter 3. More

generally, for any p ∈ [1,∞), we can consider the p-Wasserstein metric Wp(d)(µ, ν) =

infλ
(∫

d(x, x′)pλ(dx , dx′)
)1/p. So as to make the metric take finite values, we restrict the

measures under consideration to the set Pp(X ) :=
{
µ ∈P(X ) :

∫
d(x0, x)pµ(dx) < +∞

}
,

where the choice of x0 is arbitrary.

In one sentence, the coupling method is a proof strategy for bounding the distance between

two probability distributions by choosing a coupling which guarantees that pairs of el-

ements drawn from the coupling will be equal with high probability. The freedom to

choose any coupling comes from the definition of the Wasserstein distances as minimiza-

tion problems, letting (X, Y ) by any coupling of (µ, ν) we have:

W(d)(µ, ν) ≤ E[d(X, Y )]

A particular case is the well-known total variation inequality (Lindvall 2002, Chapter 1.2).

The total variation metric dTV(µ, ν), be recovered (up-to a factor of 2) by taking the trivial

metric d(x, y) = 1[x=y]. Then:

dTV(µ, ν) ≤ 2P[X 6= Y ]

5We use the term Wasserstein metric so as to be in accordance with the literature, although that name is

not historically accurate: see the discussion in (Villani 2008, p.86)
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Thus, choosing any coupling which equates the two processes with high probability guar-

antees convergence as well.

While we are here, we will state two properties of the Wasserstein distances which will

be needed in Chapter 5. The first one is that an optimal coupling (i.e. one minimizing the

transport cost) always exists. A Polish metric space is a complete separable metric space.

The vector space Rn is the only example of a Polish space which we will need to consider.

Theorem 2.2 (Existence of optimal coupling (Villani 2008, Theorem 4.1)). Let (X , d) be a

Polish space, and µ, ν ∈P(X ). Then there exists an optimal coupling of (µ, ν) which minimizes

the transport problem. That is, there exists (X?, Y ?) such that

E d(X?, Y ?) =W(d)(µ, ν) = inf
(X,Y )

E d(X, Y )

The second one is that the Wasserstein lifting preserves Polishness.

Theorem 2.3 (Completeness of Pp(X ) (Villani 2008, Theorem 6.16)). Let (X , d) be a Polish

metric space, and equip Pp(X ) with theWp(d) metric. Then Pp(X ) is a Polish metric space. In

particular, it is complete.

2.5 State Abstractions and Bisimulation Relations

In many practical applications, the state space of the MDP is simply too large to allow

one to compute the value functions exactly without the use of state abstraction. State ab-

straction refers to finding a representation of smaller dimension which will allow tractable

computation of value functions. In this thesis, we will be concerned with abstraction via

state aggregation, which consists of aggregating states into clusters. The set of aggregated

states forms the abstract MDP.
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One notion used to capture behavioral similarity of states is called bisimulation. Bisim-

ulation has long been used in the fields of concurrency and formal verification for prov-

ably verifying the correctness and safety of processes and systems (Milner 1980; Park

1981). Variants have been proposed for different notions of transition systems, including

a probabilistic version for probabilistic transition systems by (Larsen and Skou 1991). An

extension to MDPs was proposed by (Givan, Dean, and Greig 2003). Bisimulation is a

canonical equivalence for analyzing the behaviour of transition systems and clustering

equivalent states in overly large systems – the optimal policy and optimal value functions

will be preserved in the abstract MDP (Li, Walsh, and Littman 2006).

A binary relation on S is simply a subset Φ ⊆ S × S . We write sΦt if (s, t) ∈ Φ. Fur-

thermore, a binary relation is an equivalence relation if, for each s, t, w ∈ S : (1) sΦs, (2)

sΦt ⇒ tΦs, and (3) sΦt and tΦw ⇒ sΦw. An equivalence class of an equivalence relation

is a set of the form [s] := {s′ ∈ S | sΦs′}. Equivalence classes fully partition the original

state space, we write S/Φ for the set of these classes.

Definition 2.3 (Bisimulation). A bisimulation relation U on S is an equivalence relation

such that sUs′ implies:

(1) ∀a ∈ A,R(s, a) = R(s′, a) and

(2) ∀a ∈ A,∀C ∈ S/U ,P(C|s, a) = P(C|s′, a),

where P(C|s, a) =
∑

s′∈C P(s′|s, a). We say that s and s′ are bisimilar and write s ∼ s′ if

there is some bisimulation relation U relating them.

The picture is as follows: imagine that one is provided with an equivalence relation U .

Partition the state space based on the equivalence classes of U (i.e. cluster together all

the states which are related to each other). Then, one has to check that each state in each

cluster has the same rewards as every other state in that cluster, and furthermore that
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the probability of transitioning to other clusters is the same for each state. Thus bisimilar

states will have equal rewards and thereafter transition with equal probability to more

bisimilar states. Unfortunately, bisimulation is too stringent: any ε difference in rewards

or transition distributions will cause states to break their bisimilarity. To remedy this,

quantitative analogues of bisimulation have been proposed.

2.6 Bisimulation metrics

The metric analogue of bisimulation was defined by (Desharnais et al. 1999) in the setting

of labelled Markov processes (a model similar to MDPs but without rewards). The exten-

sion to MDPs was given in (Ferns, Panangaden, and Precup 2004). These metrics allow

one to measure “how bisimilar” two states are.

Technically, the bisimulation metrics are in fact pseudometrics. A pseudometric dpseudo

obeys the usual axioms of a metric except that the distance between two different points

is allowed to be 0. The kernel of a pseudometric is the set of tuples which are assigned a

distance of 0: Ker(dpseudo) =
{

(s, s′) | dpseudo(s, s′) = 0
}

. Evidently, the kernel of a proper

metric is the diagonal set ∆ = {(s, s) | s ∈ S}. Much like value functions, bisimula-

tion metrics are defined in terms of a fixed point equation (cf. Equation (2.1)). We will

occasionally abuse terminology and say “metric” in lieu of “pseudometric”.

Definition 2.4 (Bisimulation metrics). Define

F(d)(s, s′) = max
a
{(1− γ)|R(s, a)−R(s′, a)|+ γW(d)(P(·|s, a),P(·|s′, a)}.

Note thatF is an operator that takes a metric and outputs a metric. Then the bisimulation
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distance d∼ is defined as the fixed point of F :

d∼(s, s′) = max
a
{(1− γ)|R(s, a)−R(s′, a)|+ γW(d∼)(P(·|s, a),P(·|s′, a)}

= F(d∼)(s, s′) ∀ s, s′ ∈ S

Roughly speaking, the bisimulation metric is defined by measuring the difference in re-

wards at the current step and the difference in bisimulation distance between the distri-

butions of next states. Similarly to the optimal value function, the bisimulation metric

can be obtained as a sequence of iterates, setting d0(s, s′) = 0 and dn+1(s, s′) = maxa{(1−

γ)|R(s, a)−R(s′, a)|+γW(dn)(P(·|s, a),P(·|s′, a))}.6 The bisimulation metrics have many

pleasing theoretical properties: they assign a distance of zero to states if and only if they

are bisimilar (i.e. Ker(d∼) =∼). Furthermore, the metrics can be used for state abstraction

(by aggregating states that are ε away), and doing so provides one with a formal bound on

the approximation error incurred (that is, the difference between the true optimal value

function and the approximated one). Unfortunately, they are too impractical to compute

for many applications. Each iteration of the recursion requires one to compute a linear

program between the transition distributions for every pair of states, which is not only

computationally expensive but also requires knowledge of the full model of the MDP.

In the next chapter, we investigate alternative metrics for behavioural equivalence, with

the goal of maintaining the useful theoretical guarantees of bisimulation metrics while

reducing the computational burden and the need for knowledge of the model.

6In fact, a bisimulation metric can be seen as the optimal value function of a coupling of two copies of

the original MDP (Ferns and Precup 2014).
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Chapter 3

Temporally Extended Metrics: State

Abstraction via Couplings

As mentioned in Section 2.6, the bisimulation metrics have many pleasing properties but

are hindered by their computational requirements: namely, full knowledge of the MDP

and the need to solve a linear program (via the Wasserstein metric) at every step of the

recursion. In this chapter, we investigate alternative metrics for behavioural equivalence

based on couplings.

More concretely, our contributions are two-fold: first, we propose a coupling-based gen-

eralization of bisimulation which allows for greater flexibility in the comparisons be-

tween states (instead of strict reward matching), and consequently in the properties being

checked. The generalization builds on couplings, and more specifically on the proba-

bilistic liftings of a relation. By considering an arbitrary relation between states Φ as a

base relation, we describe how to “lift” this relation to a generalized Φ-bisimulation rela-

tion. Second, we consider the class of quantitative bisimulations and show how this defines

a notion of temporally extended (TE) metrics. Intuitively, these metrics compute the mini-
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mum value of a chosen base metric for which the states s and s′ can remain in that range

throughout their dynamics. The TE metrics assign distance 0 to states if and only if they

are bisimilar, much like the bisimulation metrics previously defined. However, both the

construction and the resulting metric are quite different.

The rest of the chapter is organized as follows. In the next section we introduce some

mathematical tools. In Section 3.1 and Section 3.2 we characterize bisimulation via cou-

plings and define the extension of this characterization to arbitrary relations. In Section

3.3 we define the temporally extended metrics. Section 3.4 compares the two metrics by

providing some bounds relating them and analyzing the couplings induced by the two

metrics. Lastly, we wrap up with a discussion on the benefits and disadvantages of these

metrics, highlighting directions for future work.

3.1 Bisimulation via Liftings

As seen in section 2.4, one can always construct at least one coupling between two distri-

butions (namely, the independent coupling). Thus, the sheer existence of some coupling

does not provide any information. To gain some understanding of the two distributions

being coupled, we can require that the support of a coupling satisfies some property. This

is the notion of the probabilistic lifting of a relation (henceforth simply “lifting”).

Given a binary relation Φ between states, the lifting (Φ)# of that relation allows one to nat-

urally extend Φ to a relation between distributions on states. We write supp(λ) = {(s, s′) ∈

S × S | λ(s, s′) > 0} for the support of a distribution.

Definition 3.1 (Liftings). A coupling λ of distributions (µ, ν) is a lifting of a binary relation

Φ if:

λ(s, s′) > 0⇒ sΦs′, i.e. supp(λ) ⊆ Φ.
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When there exists a lifting of µ and ν as above we write µ(Φ)#ν. The lifted relation (Φ)#

is a new binary relation between distributions.

For example, the diagonal coupling λ(s, s′) = 1[s=s′]µ(s) is a lifting of the equality relation

(=). Since the diagonal coupling is only a valid coupling if µ = ν, we see that µ(=)]ν ⇐⇒

µ = ν. As another example, the independent coupling relates every element of S, i.e. lifts

the trivial relation > = S × S. We remark on the repeated use of the word lifting for

different but related contexts: the lifting of a relation should not be confused with the

lifting of a metric via the Wasserstein metric (Section 2.4). Both procedures involve a

extending base object (namely, a binary relation or a metric) between states to an object of

the same type between distributions on states. For the rest of this chapter the term lifting

will be reserved for relations.

In bisimulation, the rewards match at the first step and thereafter the states transition

such that the bisimulation relation is preserved. This definition can also be captured in

terms of couplings: our first result is that bisimulation is equivalent to the existence of a

particular lifting of the states.

Theorem 3.1. A relation U is a bisimulation relation if and only if sUs′ implies:

(1) ∀aR(s, a) = R(s′, a)

(2) ∀a P(·|s, a) (U)# P(·|s′, a)

Proof. We prove the forward implication first. Let U be a bisimulation relation and sUt.

The first condition is immediate, since R(s, a) = R(t, a) ∀a by definition of bisimulation.

For the second condition, for each a we pick the couplings

λa,s,t(s
′, t′) =

P(s′|s, a)P(t′|t, a)/P([s′]|s, a), s′Ut′

0, s′��U t′
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where [s′] := {t′ | s′Ut′} is the equivalence class of s′. We note that the coupling depends

on each of a, s, and t although the subscripts may be omitted from now on. The marginals

match since:

λ(s′,S) =
∑
t′:s′Ut′

P(s′|s, a)P(t′|t, a)/P([s′]|s, a)

= P(s′|s, a)
∑
t′:s′Ut′

P(t′|t, a)/P([s′]|s, a)

= P(s′|s, a)P([s′]|t, a)/P([s′]|s, a)

= P(s′|s, a),

as P([s′]|s, a) = P([s′]|t, a) by the second condition of bisimulation. Similarly, λ(S, t′) =

P(t′|t, a). To make λ a lifting of U we still need to check that supp(λ) ⊆ U , which is evident

since λ(s′, t′) is only non-zero when s′Ut′.

For the converse, let U be such that sUt satisfies conditions 1 and 2. We show that U is a

bisimulation relation. Again, condition 1 is immediate sinceR(s, a) = R(t, a) ∀a. Next we

show that ∀C ∈ S/U ,P(C|s, a) = P(C|t, a). Let λ be the lifting given by condition 2. Note

that λ(C,C) = λ(C,S), since otherwise we could pick s′��U t′ and obtain (s′, t′) ∈ supp(λ),

which contradicts supp(λ) ⊆ U . Similarly, λ(S, C) = λ(C,C). Thus,

P(C|s, a) = λ(C,S) = λ(C,C) = λ(S, C) = P(C|t, a)

Since U is a bisimulation relation and sUt, then s ∼ t.

The backward implication can also be derived from the remarkable Strassen’s theorem on

couplings (see e.g. (Lindvall 1999)), which implies that for any Φ, µ(Φ)#ν ⇐⇒ ∀A ⊆

S, µ(A) ≤ ν(Φ(A)). Applied to an equivalence class C and using that U is symmetric

gives the bisimulation property.
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A simple example: bisimulation and liftings

As an example, we can consider the bisimilar states in Figure 3.1. To see that s0 and

t0 are bisimilar, take the equivalence classes S/U = {{s0, t0}, {s1, t1}, {s2, t2, t3}}. All

states in each class receive the same rewards and transition with equal probability to

all other classes, so U is indeed a bisimulation relation. Now consider the coupling λ

of (P(·|s0),P(·|t0)) given by the dashed arrows, i.e. λ(s1, t1) = λ(s2, t2) = λ(s2, t3) = 1
3
.

This coupling is a lifting of U , since all supported states are U-related. The support condi-

tion can be interpreted as finding a coupling which only transports mass (via the dashed

arrows) to and from states that are bisimilar to each other. Not all couplings are liftings:

for instance the trivial coupling ω(si, tj) = P(si|s0)P(tj|t0) is not a lifting of U .

s0

s1

s2

t0

t1

t2

t3

1
3
, [
0]

2
3 , [0]

1, [1]

1, [0]

1
3 , [0]

1
3
, [0]

1
3
, [
0]

1, [1]

1
3

1
3

1
3

1, [0]

1, [0]

Figure 3.1: Different colours represent different equivalence classes of ∼. Rewards are

indicated in square brackets, and transition probabilities of the MDP are given before the

reward. The dashed blue arrows are not part of the MDP, but rather give the weights of

the coupling of P(·|s0) and P(·|t0).
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3.2 Φ-bisimulation

Building on the previous result, one can readily generalize the first condition by using a

generic relation between states instead of demanding that the rewards be equal.

Definition 3.2 (Φ-bisimulation). Given a base relation Φ ⊆ S ×S, a Φ-bisimulation relation

U ⊆ S×S is a new relation where the states are Φ-related and their transition distributions

are U-lifted. Formally, sUs′ implies:

(1) sΦs′

(2) ∀a P (·|s, a) (U)# P(·|s′, a)

We define Φ-bisimulation Φ∼ to be the largest Φ-bisimulation relation.

This allows one to define arbitrary properties that are preserved by the dynamics of

the MDP in a systematic way. We remark, firstly, that the second condition is much

stronger than merely requiring that the lifting is a coupling supported by Φ, that is,

P (·|s, a) (Φ)# P(·|s′, a). Requiring U to be lifted also demands (in a corecursive man-

ner) that the successor states after a transition are Φ-related and can themselves exhibit an

appropriate coupling. Secondly, we note that Φ∼ is unique and well-defined, since the union

of Φ-bisimulation relations is itself a Φ-bisimulation relation. The well-behavedness of

Φ-bisimulations depends on their base relations, i.e. Φ∼ is reflexive, symmetric, and tran-

sitive whenever Φ has the same property (see Lemma 3.1). Evidently, taking the relation

Φ = {(s, t) | R(s, a) = R(t, a) ∀a} gives the usual bisimulation relation which we intro-

duced in Section 2.5 (i.e. Φ∼ = ∼). However, we can now consider arbitrary comparisons

between states (e.g equality of value functions or approximate matching of rewards) as

our base relation, and the coupling condition can be used to verify that that property

holds at future time steps as well.
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A useful result which we will need later is that if the base relation is an equivalence rela-

tion, then so is the induced bisimulation. For each property, one has to exhibit an appro-

priate coupling.

Lemma 3.1. A Φ-bisimulation Φ∼ is reflexive, symmetric, and transitive whenever Φ has the same

property.

Proof. Suppose Φ is reflexive. We find a Φ-bisimulation relation U s.t. sUs. Pick U =

{(s, s)|s ∈ S}. The first condition (sΦs) is satisfied, by reflexivity of Φ. For the sec-

ond condition, we pick the “diagonal” coupling λa(s
′, s′′) = P(s′|s, a) if s′ = s′′ and

λa(s
′, s′′) = 0 otherwise. Evidently the marginals match. The support is contained in

U since ∀a, supp(λa) = U .

Suppose Φ is symmetric, and that s Φ∼ t. Since there exists a Φ-bisimulation relation U s.t.

sUt, we define Ū = {(t, s)|(s, t) ∈ U}. We show Ū is a Φ-bisimulation relation. For the

first condition, tŪs ⇒ sUt ⇒ sΦt ⇒ tΦs since Φ is symmetric. For the second, we pick

the mirror coupling ψa(t′, s′) = λa(s
′, t′). Then, (t′, s′) ∈ supp(ψa) ⇒ (s′, t′) ∈ supp(λa) ⇒

(s′, t′) ∈ U ⇒ (t′, s′) ∈ Ū . Thus t Φ∼ s.

Finally suppose Φ is transitive, and s
Φ∼ w and w

Φ∼ t. Let U1 and U2 be the re-

spective Φ-bisimulation relations. We show that U1 ◦ U2 ⊆
Φ∼, where U1 ◦ U2 =

{(s, t) | ∃w : (s, w) ∈ U1 & (w, t) ∈ U2}. The first condition (sΦt) is met since Φ is transi-

tive. For the second condition, we let λa,1 and λa,2 be the liftings forP(·|s, a)(U1)#P(·|w, a)

and P(·|w, a)(U2)#P(·|t, a), respectively. We pick the ‘transitive’ coupling λa(s
′, t′) =∑

w′∈supp(P(·|w,a))
λa,1(s′,w′)λa,2(w′,t′)

P(w′|w,a)
. One can check that the marginals match. For the sup-

port condition, (s′, t′) ∈ supp(λa) ⇒ ∃w′ s.t. λa,1(s′, w′) > 0 & λa,2(w′, t′) > 0 ⇒ (s′, w′) ∈

supp(λa,1) & (w′, t′) ∈ supp(λa,2)⇒ (s′, w′) ∈ U1 & (w′, t′) ∈ U2 ⇒ (s′, t′) ∈ U1 ◦ U2.
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3.3 Temporally Extended Metrics

Although the framework presented in Section 3.1 is agnostic with respect to the base re-

lation Φ, we will be focusing on the setting of quantitative relations. These are relations

parametrized by the use of a real number ε ≥ 0, which arise from a base pseudometric

δ : S × S → R≥0 on states (or state-action pairs). More formally, given a base pseu-

dometric δ : S × S → R≥0, a quantitative relation δε is the relation consisting of pairs

that are ε away in the metric: δε := δ−1 ([0, ε]) = {(s, s′) | δ(s, s′) ≤ ε}. We note the

distinction between the metric δ and the relations δε derived from the metric. We call

a bisimulation arising from such a quantitative relation a quantitative bisimulation, and

will write δ∼ε rather than δε∼. An example of quantitative relations is approximate reward

equality defined by sρεs
′ if [maxa |R(s, a)−R(s′, a)| ≤ ε] , derived from the base metric

ρ(s, s′) = maxa |R(s, a)−R(s′, a)|.

In the context of quantitative bisimulations, we can define the new metric by taking the

infimum over the ε parameter. We call these the temporally extended (TE) metrics. The TE

metric finds the minimum ε such that the states are δε-bisimilar. That is, the two states are

a distance of ε away (in the base metric δ) and can be coupled corecursively so that future

states are ε away and can themselves be coupled. A temporal extension can be defined

for any base pseudometric.

Definition 3.3 (TE metric). Given a base metric δ and a corresponding collection of quan-

titative relations {δε}ε≥0, the TE metric for δ is defined by

dτ (δ)(s, s
′) = inf

{
ε | s δ∼ε s′

}
.

This construction does indeed give well-defined pseudometrics. The proof follows from

the symmetry, transitivity, and additivity of the relations δ∼ε , which we derive first.

Lemma 3.2. For all ε1, ε2 > 0 and s, t, w ∈ S, quantitative bisimulations are
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• reflexive: s Φ∼ε s,

• symmetric: s Φ∼ε t⇒ t
Φ∼ε s,

• and additive: s δ∼ε1 t & t
δ∼ε2 w ⇒ s

δ∼ε1+ε2 w.

Proof. Items 1 and 2 follow from Lemma 3.1: δε is reflexive and symmetric since δ(s, s) = 0

and δ(s, t) = δ(t, s) by definition of pseudometrics, and therefore Φ∼ε is as well. Item

3 follows from the triangle inequality (since δ(s, w) ≤ ε + ε′), choosing the transitive

coupling from the proof of Lemma 3.1 as a lifting of s Φ∼ε+ε′ w.

Theorem 3.2. Given a base pseudometric δ, the TE metric dτ (δ) is indeed a pseudometric on S.

Proof. We check the axioms, writing dτ (s, s′) instead of dτ (δ)(s, s′):

1. Note that s Φ∼0 s by Lemma 3.2, thus dτ (s, s) = infε≥0{s
Φ∼ε s} = 0.

2. Note that s Φ∼ε t⇒ t
Φ∼ε s, thus dτ (s, t) = infε{s

Φ∼ε t} = infε{t
Φ∼ε s} = dτ (t, s).

3. Let A = A1 + A2 = {ε1 + ε2|s
Φ∼ε1 w & w

Φ∼ε2 t}, and B = {ε|s Φ∼ε t}. Note A ⊆ B

since s Φ∼ε1+ε2 t by Proposition 3.2. Thus dτ (s, t) = inf(B) ≤ inf(A) = inf(A1) + inf(A2) =

dτ (s, w) + dτ (w, t).

Moreover, the temporally extended metrics assign distance 0 to states if and only if they

are perfectly bisimilar in the base metric (i.e. they are δ0-bisimilar). For the reward metric

ρ(s, s′) = maxa |R(s, a)−R(s′, a)|, this implies:

Theorem 3.3. Classical bisimulation corresponds exactly to the kernel of the temporal extension

of the reward metric ρ, i.e.

s ∼ s′ ⇐⇒ dτ (ρ)(s, s′) = 0.

For reward differences, the bisimulation metrics share this property, although our metrics

are more general. Furthermore, despite the kernels matching, the TE metrics are not the

same as the bisimulation metrics, both in construction and in the distances they assign.
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A simple example revisited
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Figure 3.2: Rewards indicated in square brackets. Dashed arrows give the weights of the

coupling of p(s0) and p(t0).

We consider the almost-bisimilar states in Figure 3.2, examined with ρ as the base

metric. In this example, all states are ρ1-bisimilar, but not ρ0-bisimilar. This is captured

by the metric: one needs to couple (s2, t1), since the marginal onto t1 has to equal

1/3 + ε and s1 only has 1/3 to spare. Since (s2, t1) ∈ supp(λ) and |R(s2) − R(t1)| = 1,

then dτ (ρ)(s0, t0) = 1. This example highlights the discontinuous behaviour of the TE

metric – in this case the ε change in the transition distributions of the MDP means that

the states can no longer be matched exactly and we must therefore couple states which

have a reward difference of 1. We discuss a possible fix for this discontinuity in Section 3.6.
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3.4 Comparing Bisimulation Metrics and Temporally Ex-

tended Metrics

In this section, we compare the temporally extended metrics with the bisimulation met-

rics. Results in this section are given in terms of reward metric ρ but can be generalized

to arbitrary base metrics. The proofs elucidate the very useful properties of liftings.

3.4.1 Bounds

Our first result relates the TE metric and the bisimulation metric with an upper bound.

Theorem 3.4. The temporal extension of ρ upper bounds the bisimulation metric: ∀s, s′ ∈ S,

d∼(s, s′) ≤ dτ (ρ)(s, s′).

Proof. Let dn denote the nth iteration of the recursion dn = Fn(d0), with d0 being the zero

metric. We will simply write dτ (s, s′) instead of dτ (ρ)(s, s′). We proceed by induction,

showing that ∀s, t, dn(s, s′) ≤ (1− γ)
∑n

i=0 γ
idτ (s, s

′). The base case is

dδ1(s, s′) = max
a
{(1− γ)|R(s, a)−R(s′, a)|} ≤ (1− γ)dτ (s, s

′),

using maxa |R(s, a) − R(s′, a)| ≤ dτ (s, s
′). For the induction step we upper bound

the min-cost coupling of the Wasserstein metric problem with the liftings λa ∈
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Λ (P(·|s, a),P(·|s′, a)) given by ρ∼dτ (s,s′).

dn+1(s, s′) = max
a
{(1− γ)|R(s, a)−R(s′, a)|+ γW(dn) (P(·|s, a),P(·|s′, a))}

≤ (1− γ)dτ (s, s
′) + γ

∑
k,j

λa(sk, sj)dn(sk, sj) (λa is a coupling)

≤ (1− γ)dτ (s, s
′)

+ γ
∑
k,j

λa(sk, sj)

(
(1− γ)

n∑
i=0

γidτ (sk, sj)

)
(induction hypothesis)

Now we use the lifting property: the only non-zero terms in the summation over (sk, sj)

are those for which (sk, sj) ∈ supp(λa) ⊆
ρ∼dτ (s,s′). Thus (sk, sj) ∈

ρ∼dτ (s,s′), and we conclude

that dτ (sk, sj) = infε sk
ρ∼ε sj ≤ dτ (s, s

′),∀sk, sj .

dn+1(s, s′) ≤ (1− γ)dτ (s, s
′)

+ γ
∑
k,j

λa(sk, sj)

(
(1− γ)

n∑
i=0

γidτ (s, s
′)

)

= (1− γ)dτ (s, s
′)
n+1∑
i=0

γi

Which completes the induction. Taking limits finishes the proof:

d∼(s, s′) ≤ 1− γ
1− γ

dτ (s, s
′) = dτ (s, s

′),

as desired.

The bound is tight, and equality needs not hold, as Figure 3.2 shows. Consequently, using

the bound from (Ferns, Panangaden, and Precup 2004, Theorem 5.1), the TE metric gives

a guarantee on the difference in optimal value functions and on the approximation error

for state-abstraction.
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Corollary 3.4.1. Let V̂ be the value function in the abstract MDP of any abstraction φ, not nec-

essarily a bisimulation. Then, ∀s, s′ ∈ S:

|V ∗(s)−V ∗(s′)| ≤ 1

1− γ
dτ (ρ)(s, s′) and

|V̂ ∗(φ(s))−V ∗(s)| ≤
γ

(1− γ)2
max
φ(s′)

max
s′∈φ(s′)

1

|φ(s′)|
∑

s′′∈φ(s)

dτ (ρ)(s′, s′′)

3.4.2 Optimal Couplings

In Figure 3.2, the same coupling minimized both the bisimulation metric and the TE met-

ric. Interestingly, the couplings chosen need not be the same in general. This is the content

of the next theorem.

Theorem 3.5. A minimum coupling λ ∈ argminΛ(P(·|s,a),P(·|s′,a))W(d∼)(P(·|s, a),P(·|s′, a))

of the bisimulation metric need not be a lifting of the optimal bisimulation ρ∼dτ (ρ)(s,s′). Con-

versely, a coupling which lifts the optimal bisimulation ρ∼dτ (ρ)(s,s′) need not be a minimizer of

W(d∼)(P(·|s, a),P(·|s′, a)).

Proof. Consider the following MDP with one action, taking ρ(s, s′) = maxa |R(s, a) −

R(s′, a)| as our base metric.

And consider the following two couplings ω∼, λτ ∈ Λ(p(s0), p(t0)).

ω∼ s1 s2

t1 ε 0

t2 0 1− ε

λτ s1 s2

t1 0 ε

t2 ε 1− 2ε

We verify that ω∼ minimizes the bisimulation distance and that λτ minimizes the tempo-

35



s0

s1

s
(1)
1

s2

s
(1)
2

s
(2)
2

s
(3)
2

ε, [0]1− ε, [0]

[0]

[0]

[1]

[1]

[1]

[0]

t0

t1

t
(1)
1

t2

t
(1)
2

t
(2)
2

t
(3)
2

ε, [0] 1− ε, [0]

[2]

[0]

[1]

[1]

[1]

[0]

Figure 3.3: State s0 transitions to s1, s2 with probability ε, 1− ε. Similarly for t0. All other

transitions are deterministic. Rewards indicated by square brackets.

rally extended metric. For ω∼:

〈ω∼, d∼〉 =
∑
u,v∈S

ω∼(u, v)d∼(u, v) = εd∼(s1, t1) + (1− ε)d∼(s2, t2)

= 2ε{2(1− γ)}.

which is easily seen to be the minimizer ofW(d∼)(P(·|s0),P(·|t0)). Meanwhile, for λτ we
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have:

〈λτ , d∼〉 =
∑
u,v∈S

λτ (u, v)d∼(u, v) = εd∼(s1, t2) + εd∼(s2, t1)

+ (1− 2ε)d∼(s2, t2)

= εd∼(s1, t2) + εd∼(s2, t1)

= 2ε{(1− γ)(1 + γ + γ2)} > 〈ω∼, d∼〉

On the other hand, using ω∼, the best relation that can be lifted is ρ∼2, since (s1, t1) ∈

supp(ω∼) andR(s1)−R(t1) = 2. Meanwhile, λτ achieves the minimum lifting of ρ∼1, since

(s1, t2), (s2, t1), (s2, t2) all have reward differences of 1. Thus ω∼ minimizes the bisimula-

tion metric but not the temporal extension metric. Conversely, λτ minimizes the tem-

poral extension metric since it achieves the minimum lifting, but not the bisimulation

metric.

Remark 3.1 (Metric on liftings vs. lifting of metric). This example the different behaviours

of the two metrics – the TE metric aims to minimize the reward difference between cou-

pled states at every step so as to ensure that a single bisimulation relation holds, whereas

the bisimulation metric is not preserving a single relation and is willing to couple large

differences at an initial step. The couplings chosen by the bisimulation metric do not give

a (generalized) bisimulation relation, and the best that one can do with a (generalized)

bisimulation relation is given by the temporal extension. This contrasts the two different

lifting procedures. The temporal extension, which minimizes over ε-bisimulation rela-

tions, is a metric on a family of liftings of relations. On the other hand, the bisimulation

metric is defined with respect to the Wasserstein metric, which is a lifting of metrics. In

short: a metric on liftings does not equal a lifting of metrics.
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3.5 Related Work

Generalizations of bisimulation relations to approximate bisimulation relations have ap-

peared before in different forms and different contexts.

One notion of approximation bisimulations originates from the work of Desharnais et al.,

which introduces ε-simulation and ε-bisimulation relations for labelled Markov processes

as opposed to Markov decision processes (Desharnais, Laviolette, and Tracol 2008). In

addition to the different setting, the two definitions are quite different: their bisimulation

relations are based on an approximate modal logic, and the “approximate” part of the

approximate relations is with respect to the transition probabilities rather than a base

metric. Furthermore, there is no notion of a base relation being lifted.

One definition which incorporates metrics for the use of approximate bisimulation is the

work of Girard and Pappas, which defines ε-bisimulations in the context of determinis-

tic and nondeterministic automata (Girard and Pappas 2007). Their definition for state-

similarity metrics is similar to ours: namely, minimizing over a family of ε-bisimulation

relations. However, the definition of bisimulation for these models is not probabilistic

and is based on matching transitions. Furthermore, in their setting the “base metric” is in

the definition of the automata, rather than a flexible choice which is independent of the

given problem.

In RL, the notion of approximate abstractions has been investigated in various ways (see

(Abel, Hershkowitz, and Littman 2016) and references therein), and occasionally through

the lens of bisimulation or homomorphism relations. However, as far as we can tell, the

coupling view, the generalized notion of Φ-bisimulation, and the definition of a pseudo-

metric through minimization over quantitative bisimulations are novel contributions to

the literature.

Finally, we note that the connection between liftings and the definition based on equiva-
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lence classes has been observed before in the different setting considered by the concur-

rency theory community (Deng and Du 2011). Our results extend this characterization to

RL as the definition of bisimulation for MDPs includes the equality of rewards condition

for the first step. The notion of bisimulation considered in that literature only focuses on

the transition distribution aspect (condition 2 of the definition of bisimulation for MDPs).

More generally, our lifting-based definition of Φ-bisimulation differs from previous defi-

nitions due to requiring that the states are related via a relation Φ at every step in addition

to satisfying the lifting criterion.

3.6 Discussion & Future Work

We have introduced the temporally extended metrics, a novel class of metrics for behavioural

equivalence, which are based on a generalized notion of bisimulation. We have estab-

lished bounds and other connections with the bisimulation metric, and seen that they

neither compute the same values nor pick out the same couplings of state distributions.

This work marks the beginning of an investigation into formally safe, computationally

tractable, and model-free metrics for behavioural equivalence. There are many interest-

ing avenues for future work that we intend to pursue. For computational aspects, the

TE metric involves the computation of a bisimulation relation rather than a bisimulation

metric, which can be done exactly in O(|A||S|3) via partition refinements as opposed to

approximated up to a degree of accuracy ε in O(|A||S|4 log |S| log ε) (Ferns, Panangaden,

and Precup 2004). Deriving an exact algorithm, however, is left for future work. The

possibility of model-free computation is hypothesized since the metric requires only the

existence of a lifting, as opposed finding the exact weights of an optimal coupling as does

the Wasserstein metric, thus should be easier to estimate from samples.

Although the metrics are continuous with respect to reward parameters of the MDP, a
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slightly disconcerting aspect of the TE metrics is their discontinuity with respect to the

transition distributions, as observed in Figure 3.2. This is because we require exact cou-

plings - we are currently investigating the use of approximate couplings to remedy this,

which have recently surfaced in the study of differential privacy (Barthe et al. 2016). In

short, the marginals of approximate couplings are not required to match exactly, and can

have a certain slack. This could allow us to capture discontinuities in the transitions dis-

tributions in addition to being able to capture them in the rewards.

Finally, as the general notions of Φ-bisimulations and temporal extensions can be consid-

ered for arbitrary relations and metrics, examining the interplay between different no-

tions of bisimulation (e.g. for optimal value functions or policy value functions) could be

a fruitful direction.
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Chapter 4

Bisimulation of algorithms:

Distributional RL vs. Expected RL

In this short chapter, we will adapt the tools and insights from the temporally extended

metrics to a new setting: rather than comparing the behaviours of two states of an MDP,

we will compare the performance of initializations in different RL algorithms. The tools

are readily applicable to this new setting: the algorithms are modelled as Markov pro-

cesses on the space of value functions. The trajectory of an algorithm in this space is

governed by the randomly sampled transitions and the update rule. We couple the sam-

pling distributions of the two algorithms, and find that we can exhibit recursive couplings

which support bisimulation relations.

The two classes of algorithms under consideration are Distributional RL and the usual

expected-value RL. This chapter is inspired from the recent paper (Lyle, Castro, and Belle-

mare 2019). The same results concerning the equivalence of the two algorithms is derived

in that paper, although with different methods. Our aim is to show the novel use of bisim-

ulation and coupling techniques for the analysis of RL algorithms.
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The rest of this chapter is organized as follows: Section 4.1 provides some background

on the distributional RL. Section 4.2 introduces the Markov process which models the

RL algorithms. Section 4.3 provides the equivalence results. Lastly, Section 4.4 discusses

possible directions for future work.

4.1 Distributional RL

Rather than learning the expected discounted sum of returns, the distributional approach

to RL (Bellemare, Dabney, and Munos 2017) instead attempts to model the full distribu-

tion of returns. We follow the notation of (Rowland et al. 2018): the distribution of returns

is written ηπ(s, a) ∈P(R). If Zπ is a random variable distributed according to ηπ then we

have E[Zπ(s, a)] = Qπ(s, a) for each (s, a) ∈ S ×A. The analogous distributional Bellman

equations are given by

T πdistZ
π(s, a) = R(s, a) + γZπ(S ′, A′), (4.1)

where S ′ ∼ P(·|s, a), A′ ∼ π(·|S ′). In terms of measures, we can equivalently write

T πdistη
π(s, a) =

∑
(s′,a′)∈X×A

(fR(s,a),γ)#η
(s′,a′)π(a′|s′)P(s′|s, a),

where (fa,b)(x) := a + bx and (f)#η(A) = η(f−1(A)) is the pushforward measure of η

under f .

The stochastic approximation algorithm that we will consider is the distributional ana-

logue of SARSA, which is a mixture update of the measure η(s, a) and a pushforward of

η(sk+1, ak+1) for a sampled transition (sk, ak,R(sk, ak), sk+1, ak+1):

ηk+1(sk, ak) = (1− αk)ηk(sk, ak) + αk(fR(sk,ak),γ)#ηk(sk+1, ak+1)

For simplicity we will only examine the case of tabular updates. Our results will hold for

both synchronous and asynchronous sampling rules.
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4.2 Value-based RL algorithms define Markov Processes

on the Space of Value Functions

For what follows, we cast value-based RL algorithms as Markov processes on the space of

value functions. To avoid distinguishing between methods for learning value functions

and methods for learning action-value functions, we will let X be an arbitrary finite do-

main (for example X = S for value functions or X = S × A for action-value functions).

We define F ⊆ [X → R] as the space of functions under consideration, and Σ a suitable

σ-algebra onF (e.g. B(R|S|) or B(R|S|×|A|)). With many RL algorithms, the stochasticity of

the algorithm depends only on the sampled transition and the random current estimate,

thus these algorithms define Markov processes over the space of functions in F :

P{fn+1|fn, fn−1, ..., f1, f0} = P{fn+1|fn}.

We will write K for the Markov kernel of the algorithms, given by K(fn,A) =

P {fn+1 ∈ A|fn} where A ∈ Σ is a measurable set.1 The probability of transitioning from

fold to fnew under the kernel is precisely the probability of sampling a transition which,

when plugged into the update rule, results in fnew. The precise form of the kernel will de-

pend on algorithmic details such as the definition of the target and the step-sizes. We will

usually not need to work with precise descriptions of the kernel and it will be enough to

consider them abstractly. For a given probability measure µ ∈P(F), we write µK(A) =∫
F
µ(dθ)K(θ,A) for the distribution of functions after one transition. We write Kn for

the Markov kernel after n steps, given inductively byKn(θ,A) =
∫
F
Kn−1(θ, dθ′)K(θ′,A).

A probability measure ψ is invariant for K if ψK = ψ. Lastly we note that we use the

term Markov process since the space of functions is uncountable, although the kernels
1In general the kernels may be time-dependent although we will only need to consider the time-

homogeneous case.
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themselves are often discrete (i.e. a finite sum of Dirac measures) for finite MDPs. With

this formalism, we can construct adequate couplings between parallel Markov processes

to show that the algorithms are bisimilar in the sense of Definition 3.2.

4.3 Bisimilarity of Distributional RL and Expected RL

Similarly to the approach taken by (Lyle, Castro, and Bellemare 2019), we define an

“equality in expectation” relation E ⊆ R|S|×|A|︸ ︷︷ ︸
value functions

× P(R)|S|×|A|︸ ︷︷ ︸
value distributions

by QEη if EZ∼η[Z] = Q.

We will show that a simple coupling can be constructed which lifts this relation for all

iterations of the algorithm execution. Due to our lifting-based characterization of bisim-

ulation, this precisely means that our algorithms are behaviourally identical.

We first recall the coupling view of bisimulation given by Theorem 3.1, and apply it to

the Markov Processes induced by SARSA and distributional SARSA. Let K and Kdist be

the Markov kernels of SARSA and distributional SARSA.

Theorem 4.1. A relation U ⊆ R|S|×|A| ×P(R)|S|×|A| is a E-bisimulation relation ⇐⇒ QUη

implies:

(1) QEη

(2) K(Q, ·) (U)# Kdist(η, ·)

Our main result is that initializations with the same expectation will bisimilar in this

sense.

Theorem 4.2. In the tabular setting, Distributional SARSA is E-bisimilar to expected SARSA if

they have the same step-size and update states according to the same sampling rule (synchronous

or otherwise). That is, if the initializations are such that Q0Eη0 then we have Q0
E∼ η0.
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Proof. Let U = {(Q, η) | QEη} be the relation which relates action-value functions Q to

the distributions η which have mean Q. Suppose Q0Eη0. To show the E-bisimilarity, we

have to exhibit a coupling of the transition kernels which supports the relation U . For

each (s, a) which is updated we couple the algorithms to take the same samples:

Q1(s, a) = (1− α)Q0(s, a) + α (R(s, a) + γQ0(s′, a′))

η1(s.a) = (1− α)η0(s, a) + α
(
(fR(s,a),γ)#η0(s′, a′)

)
 for the same

s′ ∼ p(·|s, a),

a′ ∼ π(·|s′)

Evidently, the marginals match and this is a proper coupling. To check the support prop-

erty we simply compute the expectation of η1 and use the fact that the algorithms have

sampled the same transitions. Writing η(s,a) := η(s, a):

EZ1(s,a)∼η1(s,a)[Z1(s, a)] =

∫
R
zη

(s,a)
1 (dz)

= (1− α)

∫
R
zη

(s,a)
0 (dz) + α

∫
R
z(fR(s,a),γ)#η0(s′, a′)(dz)

= (1− α)EZ(s,a)∼η0(s,a)[Z(s, a)] + αEZ0(s′,a′)∼η0(s′,a′)[R(s, a) + γZ0(s′, a′)]

= (1− α)Q0(s, a) + α (R(s, a) + γQ0(s′, a′)) = Q1(s, a),

where in the second equality we used the definition of the distributional SARSA update,

in the third equality we have used that EZ∼(fR,γ)#η[Z] = EZ∼η[R + γZ], and in the last

equality we have used the definition of the expected SARSA update and the fact that Q1

is also updated using (s′, a′). So every pair of states (Q1, η1) in the support of the coupling

lies in U , thus U is a bisimulation relation and we conclude that Q0
E∼ η0.

4.4 Discussion & Future work

We have established the equivalence (in expectation) of distributional SARSA and ex-

pected SARSA for tabular methods. The method of proof was to define an appropriate
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relation (E) and to construct a coupling which recursively supported that relation. The

chosen coupling was very simple, we simply had the two algorithms sample the same

state-action pairs. The result crucially used the coupling-based definition of bisimulation

which was derived in Chapter 3.

As previously mentioned, these results were already derived in the recent (Lyle, Castro,

and Bellemare 2019). However, as far as we are aware, the use of these proof methods is

novel to the literature. As our focus was to illustrate the use of couplings and the proofs

are similar, we have not focused on deriving further comparative results for the other

updates rules which were considered in that paper.

In the same way that it is unlikely for two states to be perfectly bisimilar, we are unlikely to

find other pairs of algorithms which are exactly equivalent. A natural extension would be

to consider approximate bisimulation methods for more intricate analyses. An interesting

direction of future work is to examine the use the bisimulation metrics or the temporally

extended metrics of Chapter 3 to compare and analyze a broader class of algorithms.
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Chapter 5

Distributional Stochastic

Approximation: Convergence via

Couplings

In the previous section, we saw how to use couplings (and a coupling-based character-

ization of bisimulation) to establish the equivalence of Distributional RL and Expected

RL for certain settings. The coupling involved was very simple: simply couple the two

algorithms to sample the same transitions. In this chapter, we will use the exact same

coupling (which we call the same-sampling coupling) to establish the convergence of a

wide class of value-based RL algorithms in one fell swoop. Rather than coupling two dif-

ferent algorithms with the same initialization and showing equivalence, we will instead

couple the same algorithm with two different (arbitrary) initializations and establish that

the updates are contractions on the space of distributions (with respect to the Wasserstein

metric with the `∞-norm as a cost function).

Contraction arguments, in combination with the Banach Fixed Point Theorem, are the
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proverbial bread and butter of Dynamic Programming theory. Proofs of convergence

for value iteration and policy iteration crucially hinge on the contractive properties of

the Bellman operators T π and T ?. In the sampling-based regime, however, proofs of

convergence are much more intricate as one cannot simply use a contraction argument.

This is not surprising – the updates taken by the algorithms depend on the particular

sequence of samples observed and thus one has to incorporate probabilistic reasoning.

For instance, typical stochastic approximation results for RL algorithms rely on hitting-

time arguments to bound the sequence of random variables within progressively smaller

regions (see, e.g., Bertsekas and Tsitsiklis 1996, Section 4.3).

In this section, we present a fresh perspective on stochastic approximation theory, which

is to consider the evolution of the full distribution of possible function estimates. The set-

ting for this analysis is the Markov process view introduced in Section 4.2. At the level of

distributions, many commonly-used algorithms retain the contractive properties of their

deterministic DP counterparts. In other words, while deterministic algorithms such as

value iteration and policy evaluation are contractions on the space of functions, we show

that sampling-based algorithms such as TD(λ) and Q-learning are contractions on the

space of distributions of functions. This enables quick and easy convergence proofs es-

tablishing weak convergence to a stationary distribution. We also characterize aspects of

the stationary distribution obtained, and our characterization will hold for any algorithm

whose target is in expectation a Bellman update.

Throughout this chapter, we will focus on the setting of synchronous updates and con-

stant step-sizes. We provide avenues for extensions to the time-inhomogeneous case in

Section 5.5.
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5.1 A general convergence criterion

In this section, we provide a coupling-based criterion for determining if a given algorithm

is a contraction on the space of distributions of functions. Recall from Section 4.2 that we

writeF ⊆ [X → R] is the set of candidate functions on a finite domain X . We will use the

`∞ norm onF defined by ‖f‖∞ = maxx |f(x)| and will simply write ‖f‖ := ‖f‖∞. We will

also use the shorthandW to denote the 1-Wasserstein metric with ‖·‖ as a cost function.

Recall from Section 2.3 that most RL algorithms have an update rule of the form

NewEstimate← (1− StepSize)× OldEstimate + StepSize× Target.

We rewrite the target as a sampling term σ(f, ω), which takes as input a function and a

random element ω ∼ µ. The random element determines which sample is taken by the

algorithm. The distribution µ captures the type of object which is being sampled (e.g.,

complete trajectories for Monte Carlo methods or single transitions for TD(0)). Thus, we

rewrite the update equation in the following way:

fn+1 ← (1− α)fn + ασ(f, ω), ω ∼ µ. (5.1)

In component-wise form, we have:

fn+1(x)← (1− α)fn(x) + ασ(f, ωx, x), ωx ∼ µx ∀ x ∈ X , (5.2)

where the µx notation denotes that the sampling distribution for each x may depend on

x. It is easy to see that all the RL algorithms covered in Section 2.3 can be written in this

manner. For example, SARSA updates for a policy π can be written in this form with

X = S × A, ω = (s′, a′) where s′ ∼ P(·|s, a), a′ ∼ π(·|s′), and σ(f, ω, (s, a)) = R(s, a) +

γf((s′, a′)). As another example, Monte Carlo Evaluation of value functions for a policy

π can be written with X = S, ω a random trajectory (sn, an)n≥0 collected starting at s0 = s
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and following π, and σ(f, ω, s) =
∑

t γ
tR(st, at) the return of that trajectory. From the

discussion in Section 4.2, each update rule induces a specific Markov kernel. We are now

ready for the full statement of the theorem.

Theorem 5.1 (Convergence Criterion). LetKα be the Markov kernel induced by an update rule

of the form (5.1) with step size 0 < α < 1, and (fαk )k≥0 a Markov chain generated by Kα and

with arbitrary initialization λ ∈ P1(F). Suppose that in the sampling term σ(f, ω), the sampling

distribution µ does not depend on f . Further suppose that σ(·, ω) is uniformly a contraction for

each ω, i.e. there exists a ρ < 1 such that for each f (1), f (2), and ω:

∥∥σ(f (1), ω)− σ(f (2), ω)
∥∥ ≤ ρ

∥∥f (1) − f (2)
∥∥ . (5.3)

Then the mapping λ 7→ λKα is a contraction inW and in particular the sequence (fαk )k≥0 con-

verges in distribution to a unique stationary distribution ψα ∈ P1(F).

Proof. Let λ(1), λ(2) ∈ P1(F) be two initial distributions of function estimates. By Theorem

2.2, there exists a coupling f (1)
0 ∼ λ(1), f

(2)
0 ∼ λ(2) which minimizes the transport cost, i.e.

such thatW(λ(1), λ(2)) = inf(X,Y ) E [‖X − Y ‖] = E
[∥∥∥f (1)

0 − f
(2)
0

∥∥∥]. We define the coupling

(f
(1)
1 , f

(2)
1 ) to take the same samples.

f
(1)
1 = (1− α)f

(1)
0 + ασ(f

(1)
0 , ω)

f
(2)
1 = (1− α)f

(2)
0 + ασ(f

(2)
0 , ω)

 for the same ω ∼ µ. (5.4)

Note that f (1)
1 ∼ λ(1)Kα and f (2)

1 ∼ λ(2)Kα since the sampling distribution does not depend

on the function estimates. Thus (f
(1)
1 , f

(2)
2 ) is a valid coupling of (λ(1)Kα, λ

(2)Kα).

With this coupling, we will show that the map λ 7→ λKα is a contraction mapping with

respect toW . Since (f
(1)
1 , f

(2)
1 ) is a valid coupling, by definition ofW we can upper bound
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W(λ(1)Kα, λ
(2)Kα) ≤ E

[∥∥∥f (1)
1 − f

(2)
1

∥∥∥]. This gives:

W(λ(1)Kα, λ
(2)Kα) ≤ E

[∥∥∥f (1)
1 − f

(2)
1

∥∥∥]
= E

[∥∥∥(1− α)f
(1)
0 + ασ(f

(1)
0 , ω)−

(
(1− α)f

(2)
0 + ασ(f

(2)
0 , ω)

)∥∥∥]
≤ (1− α)E

[∥∥∥f (1)
0 − f

(2)
0

∥∥∥]+ αE
[∥∥∥σ(f

(1)
0 , ω)− σ(f

(2)
0 , ω)

∥∥∥]
≤ ((1− α) + αρ)E

[∥∥∥f (1)
0 − f

(2)
0

∥∥∥] (by (5.1))

= (1− α + αρ)W(λ(1), λ(2))

Since ρ < 1 and 0 < α < 1 this implies 1 − α + αρ < 1, and thus that the kernel is a

contraction. Since P1 metrized with W is a complete metric space (Theorem 2.3), from

Banach’s fixed point theorem it follows that (λKn
α)n≥0 converges to a unique fixed point

ψα for any initial distribution λ. Finally ψα is a stationary distribution by the fixed point

property:

ψαDα = ψα

Remark 5.1 (About the independence condition). In the conditions of the theorem we

have required that ω ∼ µ in the sampling term σ(f, ω) does not depend on f . This means

that the sampled transitions can not depend on the current estimate of value function.

This is not a restrictive assumption – in fact most RL algorithms sample transitions from

the MDP based only on a fixed policy and the current state. An example of an algorithm

which does not satisfy this assumption is the Optimistic Policy Iteration algorithm (Tsit-

siklis 2002), in which trajectories are sampled according to a policy which is greedy with

respect to the current estimate. In that scenario the same-sampling coupling which we

used in Equation (5.1) is not allowed.

Remark 5.2 (About the contraction condition). In the conditions of the theorem we have

also required that, for each ω, σ(·, ω) is a contraction. This is not a restrictive assumption.
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We will provide some examples in the following sections. Some examples of targets which

satisfy the assumptions are Monte Carlo returns or Temporal-Difference returns. In most

examples, a sum of reward terms will cancel in the difference ‖σ(f1, ω)− σ(f2, ω)‖ and we

are left with a discount factor multiplied by ‖f1 − f2‖. We will provide some examples in

the following sections.

5.1.1 Proof strategy

In the statement of Theorem 5.1, we attempted to provide the most general conditions

which would guarantee convergence. But of course it is not possible to capture every RL

algorithm under one umbrella. Thus, we provide a simple proof recipe which can be used

to show convergence under different scenarios:

(P1) Let λ(1), λ(2) be initial distributions and (f
(1)
0 , f

(2)
0 ) be the optimal coupling which

minimizesW(λ(1), λ(2));

(P2) Define an appropriate coupling f (1)
1 ∼ λ(1)K, f

(2)
1 ∼ λ(2)K - e.g. by defining them to

follow the same trajectories if the updates sample from the same distributions;

(P3) Use the upper bound W(λ(1)K,λ(2)K) ≤ E
[∥∥∥f (1)

1 − f
(2)
2

∥∥∥] and bound

E
[∥∥∥f (1)

1 − f
(2)
1

∥∥∥] ≤ ρE
[∥∥∥f (1)

0 − f
(2)
0

∥∥∥] for some ρ < 1 (usually follows from

the recursive nature of the updates) to show that µ 7→ µK is a contraction.

5.2 Examples: Monte Carlo, SARSA, Q-Learning, TD(λ)

As applications of the general convergence criterion, we will show that convergence fol-

lows easily for a myriad of commonly-used algorithms.
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5.2.1 Monte Carlo Evaluation

Recall from Chapter 2 that the Monte Carlo Evaluation updates are given by:

Vk+1(s) = (1− α)Vk(s) + αGπ
k(s), (MCE)

where Gπ
k(s) is the return of a random trajectory collected at s and following π. Here

we have ω = (sn, an)≥0 and σ(f (1), ω) =
∑

t γ
tR(st, at). By theorem 5.1, we need only

show that for the same-sampling coupling we have
∥∥∥σ(f

(1)
1 , ω)− σ(f

(2)
1 , ω)

∥∥∥. This follows

trivially since σ does not actually depend on f .

∥∥∥σ(f
(1)
1 , ω)− σ(f

(2)
1 , ω)

∥∥∥ = max
s

∣∣∣∣∣∑
t

γtR(st, at)−
∑
t

γtR(st, at)

∣∣∣∣∣ = 0.

Since the two processes sample the same trajectories, the difference in the returns is 0.

5.2.2 TD(0)

The TD(0) updates are given by:

V
(1)
k+1(s) = (1− α)V

(1)
k (s) + α

(
R(s, a) + γV

(1)
k (s′)

) a ∼ π(·|s)

s′ ∼ P(·|s, a)
(TD(0))

Here we have that ωs = (as, s
′
s) (the subscript indicates dependence on s) and σ(V, ωs, s) =

R(s, as) + γV (s′s). Again, the bound follows easily:∥∥∥σ(V
(1)

1 , ω)− σ(V
(2)

1 , ω)
∥∥∥ = max

s
|R(s, as) + γV (1)(s′s)−R(s, as)− γV (2)(s′s)|

= γmax
s
|V (1)(s′s)− V (2)(s′s)|

≤ γmax
s
|V (1)(s)− V (2)(s)| = γ

∥∥V (1) − V (2)
∥∥

We have made crucial use of the fact that V (1) and V (2) have sampled the same transitions

to obtain the inequality maxs |V (1)(s′s)− V (2)(s′s)| ≤ maxs |V (1)(s)− V (2)(s)|.
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Remark 5.3. We note that when α = 1 the stationary distribution which is obtained is

precisely the value distribution of Distributional RL! This follows from the distributional

Bellman equation (4.1). For α 6= 1, the stationary distribution over value functions will in

general not be the same as the value distribution of Distributional RL.

5.2.3 SARSA

The SARSA updates are given by:

Qk+1(s, a) = (1− α)Qk(s, a) + α (R(s, a) + γQk(s
′, a′))

s′ ∼ P(·|s, a)

a′ ∼ π(·|s′)
(SARSA)

Here we have ω(s,a) = (s′(s,a), a
′
(s,a)) and σ(Q,ω(s,a), (s, a)) = R(s, a)+γQ(s′, a′). The bound

follows along the same lines. We omit the subscripts on s′, a′:

∥∥σ(Q(1), ω)− σ(Q(2), ω)
∥∥ = max

s,a

∣∣R(s, a)−R(s, a) + γ
(
Q(1)(s′, a′)−Q(2)(s′, a′)

)∣∣
= γmax

s,a

∣∣Q(1)(s′, a′)−Q(2)(s′, a′)
∣∣

≤ γmax
s,a

∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣ = γ

∥∥Q(1) −Q(2)
∥∥

5.2.4 Q-Learning

The Q-Learning updates are:

Qk+1(s, a) = (1−α)Qk(s, a)+α
(
R(s, a) + γmax

a′
Qk(s

′, a′)
)

s′ ∼ P(·|s, a) (Q-Learning)
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The bound follows again, but with one additional step. We omit subscripts on s′.

∥∥σ(Q(1), ω)− σ(Q(2), ω)
∥∥ = max

s,a

∣∣∣R(s, a)−R(s, a) + γ
(

max
a′

Q(1)(s′, a′)−max
a′

Q(2)(s′, a′)
)∣∣∣

= γmax
s,a

∣∣∣max
a′

Q(1)(s′, a′)−max
a′

Q(2)(s′, a′)
∣∣∣

≤ γmax
s,a

max
a′

∣∣Q(1)(s′, a′)−Q(2)(s′, a′)
∣∣

≤ γmax
s,a

∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣ = γ

∥∥Q(1) −Q(2)
∥∥

5.2.5 TD(λ)

The TD(λ) updates are:

Vk+1(s) = (1− α)Vk(s) + α(1− λ)
∞∑
n=1

λn−1

(
n∑
i=0

γiR(si, ai) + γnVk(sn)

)
, (TD(λ))

with ωs = (a0, s1, a2, ...). By the coupling, the reward terms will cancel in every n-step

trajectory. We write G(i)
n = R(s, a0) + ... + γn−1R(sn−1, an−1) + γnV (i)(sn) for the n-step
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return:

∥∥σ(V (1), ω)− σ(V (2), ω)
∥∥ = (1− λ) max

s

∣∣∣∣∣
∞∑
n=1

λn−1G(1)
n −

∞∑
n=1

λn−1G(2)
n

∣∣∣∣∣
= (1− λ) max

s

∣∣∣∣∣
∞∑
n=1

λn−1
(
G(1)
n −G(2)

n

)∣∣∣∣∣
= (1− λ) max

s

∣∣∣∣∣
∞∑
n=1

λn−1
(
γnV (1)(sn)− γnV (2)(sn)

)∣∣∣∣∣
(reward terms cancel)

= (1− λ) max
s

∣∣∣∣∣
∞∑
n=1

λn−1γn
(
V (1)(sn)− V (2)(sn)

)∣∣∣∣∣
≤ (1− λ)

∞∑
n=1

λn−1γn max
s

∣∣(V (1)(sn)− V (2)(sn)
)∣∣

≤ (1− λ)
∞∑
n=1

λn−1γn max
s

∣∣V (1)(s)− V (2)(s)
∣∣

= (1− λ)γ
λγ

1− λγ
∥∥V (1) − V (2)

∥∥
Of course, it is not possible to cover all existing RL algorithms, but the techniques shown

in these examples are widely applicable.

5.3 Characterizing the stationary distributions

In this section we give some results which characterize the stationary distributions ob-

tained from (5.1). We give closed forms for the mean and the covariance of the stationary

distributions for any such algorithm. The only requirement will be that the expected tar-

get is a Bellman update of T π or T ?, which is commonly a design decision in any RL

algorithm. Thus this characterization is true both for evaluation and control algorithms.

56



5.3.1 Mean is the true value function

Firstly, we can show that the mean of the stationary distribution is indeed the true value

function V π or V ?. We will write everything in terms of the policy case, as the optimality

case is recovered by taking π = π?.

Theorem 5.2. Let ψα be the stationary distribution obtained by theorem 5.1 when running the

recursion (5.1) with learning rate α. Suppose that σ(f, ω) is, in expectation over ω, a Bellman

update of f , i.e. Eω∼µ [σ(f, ω)] = T πf for any policy π. Then fα = fπ, where fα = E[fα] is the

expected value of fα ∼ ψα and fπ is the fixed point of T π.

Proof. Let f0 be distributed according to ψα. Rewriting equation (5.1):

f1 = (1− α)f0 + αT πf0 + αξ(f0), (5.5)

where ξ(f0) = σ(f0, ω) − T πf0 is a zero-mean noise term. Taking expectations on both

sides, and using that f1 is also distributed according to ψα by stationarity and that

E[ξ(f)] = 0 for any f :

fα = (1− α)fα + αE[T πf0]

αfα = αE[Rπ + γPπf0]

fα = Rπ + γPπE[f0]

fα = T πfα

And therefore fα = fπ since it is the unique fixed point of T π.

5.3.2 Covariance

In addition, we can derive a closed-form for the covariance of the stationary distribution.

Again, the results will hold whenever the expected target is a Bellman update of some
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policy. We first introduce some linear algebra notation. For vectors x, y ∈ Rn, we write

x ⊗ y ∈ Rn×n for the tensor product of x and y, defined by (x ⊗ y)(i, j) = x(i)y(j) for

i, j ∈ [n]. By extension, the tensor product for two matrices M,N ∈ Rn×n is the mapping

Rn×n → Rn×n defined byM⊗N : P 7→MPN . A useful identity which we will repeatedly

use is that (S ⊗ T )(x ⊗ y) = (Sx) ⊗ (Ty). With this notation the covariance of a random

vector ~X with mean µ can be written E
[
( ~X − µ)⊗2

]
.

Theorem 5.3. Let ψα be the stationary distribution obtained by theorem 5.1 when running the

recursion (5.1) with learning rate α, and let fα ∼ ψα. Define C(f) := E [ξ(f)⊗2] to be the

covariance of the noise term for a given function. Suppose that σ(f, ω) is, in expectation, a Bellman

update of f , i.e. Eω∼µ [σ(f, ω)] = T πf for any policy π. For any α > 0, the covariance of fα is

given by

E
[
(fα − fπ)⊗2

]
= α2

[
I − ((1− α)I + αγP π)⊗2]−1

∫
C(v)ψα(dv)

We preface the proof with some useful identities.

Lemma 5.1. In the same setup as Theorem 5.3:

E [(fα − fπ)⊗ (T πfα − fπ + ξ(f0))] = (I ⊗ γP π)E
[
(fα − fπ)⊗2

]
and

E
[
((T πfα − fπ) + ξ(fα))⊗2] = γ2(P π)⊗2E

[
(fα − fπ)⊗2

]
+

∫
C(v)ψα(dv)

Proof. Let f0 ∼ ψα, by (5.1) we have f1 = (1 − α)f0 + α(T πf0 + ξ(f0)) and f1 ∼ ψα.

Furthermore, the distribution of f0 is independent of the distribution of ω ∼ µ by the

conditions of Theorem 5.1. By independence,

E [(f0 − fπ)⊗ ξ(f0)] = Ef0Eω [(f0 − fπ)⊗ ξ(f0)] (by independence of f0 and ξ(·))

= Ef0 [(f0 − fπ)⊗ Eωξ(f0)] = 0 (Eω[ξ(f)] = 0 for every f )
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For the first identity, note that

E [(f0 − fπ)⊗ (T πf0 − fπ))] = E [(f0 − fπ)⊗ (Rπ + γPπ(f0)−Rπ − γPπ(fπ)]

= E [(f0 − fπ)⊗ γPπ(f0 − fπ)]

= E
[
(I ⊗ γPπ)(f0 − fπ)⊗2

]
= γ(I ⊗ Pπ)E

[
(f0 − fπ)⊗2

]
.

The first identity then follows by using E [(f0 − fπ)⊗ ξ(f0)] = 0 and linearity of tensors

products and expectations.

For the second identity, expanding the tensor product gives:

E
[
((T πf0 − fπ) + ξ(f0))⊗2] = E

[
(T πf0 − fπ)⊗2 + (ξ(f0))⊗2

]
+ E

[
((((

((((
(((

(T πf0 − fπ)⊗ ξ(f0) +
((((

((((
(((

ξ(f0)⊗ (T πf0 − fπ)
]

= E
[
(γP π(f0 − fπ))⊗2

]
+

∫
C(v)ψα(dv)

= (γP π)⊗2E
[
(f0 − fπ)⊗2

]
+

∫
C(v)ψα(dv)

where we used E [(T πf0 − fπ)⊗ ξ(f0)] = 0.

Proof (of Theorem 5.3). Again let f0 be distributed according to ψα. Subtracting fπ from

equation (5.5),

f1 − fπ = (1− α)(f0 − fπ) + α (T πf0 − fπ + ξ(f0)) .

and taking tensor products:

(f1 − fπ)⊗2 =(1− α)2 (f0 − fπ)⊗2 + α2 [T πf0 − fπ + ξ(f0)]⊗2

+ α(1− α) [(f0 − fπ)⊗ (T πf0 − fπ + ξ(f0))]

+ α(1− α) [(T πf0 − fπ + ξ(f0))⊗ (f0 − fπ)] .
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Taking expectations on both sides, and using Lemma 5.1:

E
[
(f1 − fπ)⊗2

]
=(1− α)2E

[
(f0 − fπ)⊗2

]
+ α2

{
(γP π)⊗2E[(f0 − fπ)] +

∫
C(v)ψa(dv)

}
+ α(1− α) (I ⊗ γP π + γP π ⊗ I)E

[
(f0 − fπ)⊗2

]
Since E [(f1 − fπ)⊗2] = E [(f0 − fπ)⊗2] by stationarity, re-arranging to the LHS and factor-

ing gives:

[
I − ((1− α)I + αγP π)⊗2]E [(f0 − fπ)⊗2

]
= α2

∫
C(v)ψα(dv)

We further show that the matrix on the LHS is invertible. By (Puterman 2014, Corollary

C.4) it will follow from showing that ρ
(
((1− α)I + αγP π)⊗2) < 1, where ρ(A) is the spec-

tral radius of matrixA. Writing ‖A‖op = maxi
∑

j A(i, j) for the operator norm of a matrix

A, and using that ρ(A) ≤ ‖A‖op, ‖A⊗B‖op = ‖A‖op ‖B‖op, and ‖P π‖op = ‖I‖op = 1:

∥∥((1− α)I + αγP π)⊗2
∥∥

op = ‖(1− α)I + αγP π‖2
op ≤ ((1− α) + αγ)2 < 1 (since γ < 1)

Remark 5.4. We note that the previous two results can be extended to a more general

setting: the expectation of the target can be any operator H which has a fixed point fH
and commutes with the expectations (i.e. E[Hf ] = HE[f ]). Theorems 5.2 and 5.3 hold

mutantis mutandis. An example of such an operator would be the one considered in the

Retrace(λ) algorithm (Munos et al. 2016).

5.4 Related Work

The algorithms considered here have previously been shown to converge, often in nu-

merous ways (e.g. for Q-learning, see Watkins and Dayan 1992; Tsitsiklis 1994; Jaakkola,
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Jordan, and Singh 1994; Littman and Szepesvári 1996). However, these results all focus

on almost sure convergence of the iterates when the step sizes are taken to decrease ac-

cording to the Robbins-Monro conditions (
∑

t αt → +∞ and
∑

t α
2
t < +∞).

Weak convergence properties of stochastic approximation algorithms have also been ex-

amined. A classic reference on stochastic approximation is (Kushner and Yin 2003), which

develops some theory for the constant step-size case in Chapter 8. Other works which

study constant step-size algorithms are (Yu 2016; Lakshminarayanan and Szepesvári

2017). However, our results and methods are vastly different. In particular, the above

references do not discuss convergence to a stationary distribution, and their methods of

proof are not as simple. As far as we are aware, the result that RL algorithms are contrac-

tions on the space of distributions is novel.

Our methods for this section are similar to (Dieuleveut, Durmus, and Bach 2017), which

develops the theory for constant-step size stochastic gradient descent in the context of

supervised learning. In particular the proof of theorem 5.1 is inspired from their propo-

sition 2, although simplified and adapted to the reinforcement learning setting.

5.5 Discussion & Future Work

In this chapter, we proposed a distributional perspective on stochastic approximation the-

ory, which involves studying the evolution of the distribution of possible value function

estimates. While DP theory relies fundamentally on contraction arguments, in RL (where

algorithms are stochastic) similar techniques have not been immediately available. We

showed that stochastic approximation algorithms for RL can indeed be found to be con-

tractive if we “lift” to the space of distributions of functions.

We outlined general criteria for convergence, which are satisfied for many algorithms.

There exist algorithms where the conditions of theorem 5.1 do not hold (e.g. Optimistic
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Policy Iteration), although we are confident that the coupling methodology can extend.

Indeed, we have only made use of one very simple coupling (the same-sampling cou-

pling), so in a sense we are just scratching the surface. Avenues for future work include:

Online updates/Decreasing step sizes

With online updates, only the state which was most recently sampled gets updated. In

the online setting or with changing step-sizes, we no longer have a time-homogeneous

Markov kernel K. Instead we are now dealing with time-dependent kernels Kn(f, A) =

P {fn+1 ∈ A|fn = f}. In particular, we will need a ’time-dependent’ analogue of the Ba-

nach fixed point strategy to show λK1K2 · · ·Kn
n→∞−−−→ ψ. This can be achieved, e.g., by

showing that the sequence (λK1 · · ·Kn)n≥0 is contractive and therefore Cauchy.1 Time-

dependent maps have been studied in the stochastic approximation literature (Bertsekas

and Tsitsiklis 1996, Proposition 4.5), so it is possible that our methods provide similar

simplifications to this setting as well.

Optimistic Policy Iteration

The Optimistic Policy Iteration algorithm (with synchronous updates and constant step-

size) performs the following updates:

Vn+1(s) = (1− α)Vn(s) + αGπVn (s),

where πVn is a policy which is greedy with respect to Vn andGπVn is the return of a random

trajectory starting at s and following πVn . The policy (and thus the sampling distribution)

updates at every iteration and depends on the current value function. For two initial dis-

tributions V (1)
0 ∼ λ(1), V

(2)
0 ∼ λ(2), we cannot couple V (1)

1 and V
(2)

1 to sample the same
1A sequence is contractive if it satisfiesW2(λK1 · · ·Kn, λK1 · · ·Kn+1) ≤ ρW2(λK1 · · ·Kn−1, λK1 · · ·Kn)
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trajectories, since the sampling distribution depends on the value functions themselves.

In DP theory, another fundamental property of the Bellman operators is monotonicity.

Continuing the analogy between DP theory on functions and RL theory on distributions

of functions, we are currently investigating the use of “monotonicity” properties for this

algorithm. This requires defining a suitable notion of monotonicity between distribu-

tions. A good candidate is stochastic domination, which has deep ties with coupling theory

(e.g. via Strassen’s theorem) (Lindvall 2002, Chapter IV).

Function approximation

So far, we have only considered tabular methods. It would be interesting to see if the

methods extend to function approximation settings.

Beyond value-based methods

Finally, beyond value-based methods, virtually every class of RL method features some

randomness. As we can couple any type of stochastic process, making use of coupling

techniques to reason about these other families of RL methods (e.g. policy gradient meth-

ods) promises to be a fruitful direction.
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Chapter 6

Conclusion

In this thesis we presented numerous applications demonstrating the effectiveness of cou-

plings as a tool for behavioural analyses in RL.

Our first application was the characterization of bisimulation via couplings (Section 3.1),

or more specifically probabilistic liftings, and the subsequent generalization of this char-

acterization to consider arbitrary relations between states instead of reward equality (Sec-

tion 3.2) . We examined the case of quantitative relations arising from a base pseudomet-

ric of choice, and defined a notion of temporally extended metrics, which extend the base

metric to reflect long-term differences in the MDP (Section 3.3). We compared and con-

trasted with previously-defined metrics for state-similarity, the bisimulation metrics, by

providing bounds and examining their different behaviours on some simple MDPs (Sec-

tion 3.4).

Next, we turned from the problem of measuring state similarity to the problem of mea-

suring algorithm similarity, and showed that these were two sides of the same coin. By

casting common RL algorithms as Markov processes on the space of value functions (Sec-

tion 4.2), we are able to use the same coupling methods and insights acquired thus far. By
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exhibiting a very simple coupling (the same-sampling coupling), we provide an example

of algorithms which are bisimilar for the “equality in expectation” relation: namely, the

distributional SARSA algorithm and the usual expected-value SARSA algorithm in the

tabular setting (Section 4.3).

Lastly, we turned from measuring the long-term behaviours of two algorithms with sim-

ilar initializations to measuring that of the same algorithm with differing initializations.

For the synchronous and constant step-size case, we consider the evolution of the full

distribution of possible value functions estimates of common sampling-based algorithms,

and, with the aid of the same-sampling coupling, show that many common RL algorithms

are contractions on the space of such distributions. We provide a simple criteria for veri-

fying if a given update rule induces a contraction (Section 5.1), which is easily checked for

a variety of cases (Section 5.2). The contraction property entails the convergence of these

algorithms to a stationary distribution, which we characterize by providing closed-form

expressions for the mean and covariance (Section 5.3).

For each of these developments, we have highlighted promising avenues for future work

(see Section 3.6, Section 4.4, and Section 5.5, respectively).
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