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Abstract

Modern Reinforcement Learning (RL) applications require the introduction of func-
tion approximation to generalize knowledge across large, complicated environments.
From a theoretical perspective, there has been an interest in leveraging function ap-
proximation to develop RL algorithms with statistical complexities independent of the
size of the state space (which is enormous in most applications of interest). All of these
works require certain assumptions about the environments encountered or the quality
of the approximation scheme. In this thesis, I will be studying when it is and isn’t pos-
sible to achieve this goal under different function approximation settings and under
various “minimal” assumptions. I will also argue that the necessary assumptions are
too stringent, and will be interested in re-examining canonical notions of optimality
and efficiency to study what remains possible in more realistic settings.
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Part I

Setting the stage

1 Introduction

This thesis investigates theoretical aspects of Reinforcement Learning (RL), the branch of
AI concerned with sequential decision-making in a unknown and changing environment.
Recent advances in RL have demonstrated impressive empirical successes in complicated
environments such as the game of Go [1], autonomous navigation [2], and protein folding
problems [3]. Due to its generality, RL has the potential to be applied to even more critical
applications, notably in the fields of healthcare [4] and climate change [5]. The key to all
of these advances is the merging of RL algorithms with high-powered function approxima-
tors (in particular, deep neural networks). Despite the success of these advancements, the
theoretical understanding of such function approximation schemes and their uses in RL is
still relatively nascent.

1.1 Why is function approximation necessary?

The typical framework for RL is the Markov Decision Process (MDP) [6]. A policy in an
MDP is a mapping from histories of states to distributions over actions. The goal of an RL
agent is to maximize its expected sum of lifetime rewards by finding the optimal policy. In
the RL setting, we assume that the MDP is unknown. Thus, the agent must find a good
policy while simultaneously learning about (or “exploring”) the environment. There is now
a mature theory of provably efficient RL methods without function approximation [7].1

These approaches for learning in MDPs have statistical and computational complexities
which are polynomial in the size of the state and action spaces, and one can show that this
is unavoidable in general. Intuitively, without further structure, each state-action pair must
be checked at least once [8]. The guarantee of efficiency is crucial for certain applications,
but the dependence on the state space size is clearly too large in most applications of
interest; for example, the game of Go has more states than the number of atoms in the
universe [9].

1This setting is typically called the tabular setting.
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This establishes the need for approximation. The predominant approach is to introduce
a function class F which will be used to model objects of interest. These may be value
functions, policies, or MDPs themselves (these objects will be defined more formally in
Section 2). With the help of the function class, one can avoid having to learn a separate
value at each state-action pair, and instead rely on the learned function to “generalize”
knowledge to unseen states. For this thesis, we will assume that the learner is simply
given this function class, and the separate interesting question of designing or learning this
function class is left on the table.

1.2 Central question, and objectives of this thesis

This thesis studies questions which will help us understand the following broad question:

Question 1.1 (Informal). When (and how) can function approximation enable algorithms
that recover “good” solutions to the MDP in a provably-“efficient” manner?.

We note, in particular, two terms which have not been well-defined in this question.
Firstly, what is a “good” solution? And secondly, which complexities count as “efficient”?
There are canonical (and commonly-accepted) answers for these questions:

“Definition” 1.2 (Canonical objectives). Respectively:

• “goodness”: the algorithm should recover a near-optimal policy, upto some given subop-
timality ε

• “efficiency”: the algorithm should have (worst-case) complexities that are polynomial
only in 1) the “complexity” of the function class, 2) the horizon of the MDP, and 3) 1/ε.

In particular, the complexities of the algorithm should be independent of the size of the
state-action space (although we may occasionally accept dependence on the size of the
action space). In the sequel we will refer to these definitions of goodness and efficiency as
“canonical”.

We need to assume some “connection” between the MDP and the function class, oth-
erwise recovering the optimal policy will be just as difficult as when one is not given a
function class.2 Unfortunately, we will see that obtaining these guarantees will require
restrictive assumptions in general. In this thesis, we are interested in both

1. the “minimal” amount of assumptions required to obtain the above goal, and

2. re-examinining these definitions.

The objective of the first item is the usual (important) one: we want our algorithms
to come with guarantees that apply in as many cases as possible. Assumptions that are
hard to verify, unlikely to hold, or difficult to enforce can limit the applicability of RL for
important real-life applications where provable guarantees are needed. Of course, there
may be several non-overlapping answers for which assumptions can be called minimal. For

2For example we can imagine the case where the function class only contains the 0 function.
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example, assuming determinism of the MDP is orthogonal from assuming representational
properties from the function class, which is orthogonal from assuming stronger interaction
protocols (e.g. the presence of a “simulator” or the presence of some expert advice).

As for the second item: we will see several times that achieving the canonical goal will
be impossible without some restrictive and arguably unrealistic assumptions. We argue
in this thesis that it is also useful to flip the question. Namely, we should think about
which assumptions we are willing to tolerate, and then to study which relaxed guarantees
are possible by modifying one or both of the above goals. This implies, in particular, that
in this more “realistic” setting, we will obtain worse statistical rates or a lower quality
solution. Of course, we will also need to argue that these worse guarantees are the best
that can be done in this new problem setting.

This thesis will roughly be split in two halves, corresponding to each of the above items.
We approach this broad task by studying a variety of concrete learning problems in RL
where these goals remain poorly understood. A central theme of this thesis will be to ex-
amine both what is and isn’t possible under various function approximation settings, which
will require a combination of positive results (“this task is solvable by some algorithm with
complexity at most x”) and negative ones (“no algorithm that solves this task can do so
with complexity smaller than y”). The positive results will give rise to new algorithms that
provably work in more general (thus more practical) settings. The negative results will tell
us what we can hope to expect, and their proofs may explain the failure modes of RL with
function approximation while motivating natural additional assumptions.

1.3 Overview of the proposal

We begin in Section 2 by covering some of the necessary background.
The second part of this proposal (Part II) will be focusing on the special case of linear

function approximation. Despite the apparent simplicity of the linear structure (and its
introduction at least since the 60s [10]), it’s interplay with the RL problem remained
poorly understood. We investigated, in a series of three papers, a central open question
which asked whether realizability of the optimal value function alone was sufficient for
sample-efficient learning. We showed that the answer is a) no in general (Section 3), but
yes if b) the number of actions is “small” (Section 4), or c) a “small” amount of expert
advice is available (Section 5).

The last part of this proposal (Part III) will more broadly aim to study relaxations of the
canonical objectives (Definition 1.2). Section 6 begins by tackling the misspecified setting
and derives optimal estimators for the problem of offline linear value function estimation.
Section 7 proposes a generalized notion of regret which could meaningfully be used in
settings where optimality is unachievable. Section 8 proposes to leverage recent connec-
tions between offline RL and online RL to derive complexity measures that characterize
the hardness of learning with general realizable function classes.
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2 Preliminaries

Notation We use typical asymptotic notation O and Ω. We use Õ and Ω̃ when ignoring
logarithmic factors. We use poly(·) to denote arbitrary polynomial quantities in (·). For
N ∈ N, we write [N ] = {1, . . . , N}. We write Dists(X ) for the set of probability measures
on a space X (the σ-algebras will simply be the power set when on discrete spaces or the
Borel σ-algebra when on Rn).

Markov Decision Processes A Markov Decision Process (MDP) is a formulation that
captures optimal decision-making in a changing and stochastic environment [6]. In this
thesis we will only consider MDPs with finite state and action spaces. Most of our results
will hold for both the finite-horizon setting, where there is a horizon H after which each
episode terminates, and the infinite-horizon setting, where episodes do not terminate but
rewards are discounted geometrically by a discount factor γ. For simplicity we will firstly
give the exposition for the discounted setting, and then discuss the differences with the
finite-horizon setting.

Definition 2.1 (Discounted infinite-horizon MDP). A discounted infinite-horizon MDP is
defined byM = ⟨S,A,R,P , γ, µ0⟩, where

• S = [S] is a finite state space

• A = [A] is a finite action space

• R : S ×A → Dists([0, 1]) is a stochastic reward function with expectation r(s, a)

• P : S ×A → Dists(S) is a transition function

• γ ∈ [0, 1) is a discount factor

• µ0 ∈ Dists(S) is a starting distribution

As is standard, we have assumed that the reward function is almost-surely bounded in
the interval [0, 1]. The objective of the agent is to maximize its return, which is defined as
the expected discounted sum of rewards, i.e. the quantity E[

∑∞
t=0 γ

trt]. This expectation
is taken over the distribution generated by interleaving the actions taken by the agent and
the rewards and transitions resulting from those actions. Note that by reward-boundedness
the return is bounded by 1/(1−γ). The strategy of the agent can be formalized as a policy,
which is a mapping from histories of states to distributions over actions. A memoryless
(or Markov) policy is a mapping π : S → Dists(A). Memoryless policies will henceforth
simply be called policies. A policy defines two fundamentals functions called the value
function vπ : S → [0, 1/(1 − γ)] and the action-value function qπ : S × A → [0, 1/(1 − γ)].
These are defined via

vπ(s) = E[
∞∑
t=0

γtrt | S0 = s] & qπ(s, a) = E[
∞∑
t=0

γtrt | S0 = s, A0 = a] (1)
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The value function vπ (resp. qπ) can be written as S-dimensional (resp. S · A-dimensional)
vectors. Value functions satisfy the recursion

vπ(s) = Ea∼π(s)

[
r(s, a) + γEs′∼P(s,a)[v

π(s′)]
]
:= T πvπ(s) (2)

qπ(s, a) = r(s, a) + γEs′∼P(s,a),a′∼π[q
π(s′, a′)] := T πqπ(s, a) (3)

In equations (2) and (3) we have also defined the policy-specific Bellman evaluation oper-
ators T π which apply the right-hand-side of the above equations.3

An optimal policy is defined as a policy which simultaneously maximizes the return at
all states. It is a fundamental theorem about MDPs [6] that optimal policies exist, are
memoryless, and that there exists a deterministic optimal policy. For simplicity we refer
to one of the deterministic optimal policies as the optimal policy, and denote it by π⋆. Its
value functions are denoted by v⋆ and q⋆. The optimal value functions satisfy the recursion

v⋆(s) = max
a
{r(s, a) + γEs′∼P(s,a)[v

⋆(s′)]} := T v⋆(s) (4)

q⋆(s, a) = r(s, a) + γEs′∼P(s,a)[max
a′

q⋆(s′, a′)] := T q⋆(s, a). (5)

Equations (4) and (5) have also defined the Bellman optimality operators T (or simply Bell-
man operators). It is easy to see that the Bellman operators T π and T have their respective
value functions as fixed points. Since the Bellman operators are L∞-contractive (with Lip-
shitz constant γ < 1), this fixed point is unique by the Banach fixed-point theorem.

Finite-horizon MDPs In the finite-horizon setting, the definition of the MDPs are identi-
cal except that the discount factor is instead replaced by H ∈ N, and the return is defined
as the expected sum of rewards along trajectories of length H, E[

∑H
t=1 rt]. The “semantics”

for this model are that after H steps, the agent is reset to a new state sampled from the
starting distribution. We can assume without loss of generality that S is a disjoint union of
per-horizon state spaces, i.e. S = ∪h∈[H]Sh. Furthermore, in the finite-horizon setting, the
objects of interest may be non-stationary, meaning that they depend on the current step
h ∈ [H]. A (non-stationary) policy π = (π1, · · · , πH) prescribes a sequence of actions πh :
Sh → Dists(A), and its value function is vπ(s) = E[

∑H
h′=h r(sh′ , ah′) | sh = s, ah′ ∼ πh′(sh′)],

where s ∈ Sh. The action-value function qπ(s, a) is defined similarly, save that the first
action taken is a and the proceeding actions follow π. The definitions of the optimal value
functions and the Bellman operators follow similarly.

Sample complexities in RL (the PAC objective) In RL, we assume that the MDP is
unknown to the agent, and thus they must “explore” the MDP and collect enough samples
to deduce the optimal policy. We measure the efficiency of an algorithm as the number of
samples required to recover a policy with a probably-approximately-correct value function:

3We do not distinguish the Bellman operators on RS and those on RS·A, since it will be clear by type-
checking which one is being applied.
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Objective 2.2 (PAC-MDP). The objective is to find a policy π̂ such that

vπ̂(µ0) ≥ v⋆(µ0)− ε with probability ≥ 1− δ, (6)

where we have introduce the shorthand v(µ0) = Es∼µ0 [v(s)]. 4

We refer to such a policy as ε-suboptimal (or sometimes ε-optimal). The sample com-
plexity of an algorithm A is the worst-case number of samples n(A, ε, δ) required to find a
policy satisfying (6).

Interaction protocols At different times we will be considering several different interac-
tion protocols. The weakest one is the offline setting, where the agent is only given a fixed
dataset {(si, ai, ri, s′i, a′i)}ni=1 collected i.i.d. from the MDP in the following manner:

si
i.i.d.∼ µ, ai ∼ πb(si), ri ∼ R(si, ai), s′i ∼ P(si, ai), a′i ∼ πb(s

′
i). (7)

In particular, no further interaction with the MDP is allowed. The policy πb is called the
behaviour policy.

By contrast, the online setting is the case where the agent can interact with the MDP.
5 Here, from any state s, the agent can take action a, which will gives a random reward
r ∼ R(s, a) and transitions the agent to state s′ ∼ P(s, a). The initial state is sampled
from µ0. In the finite-horizon setting, trajectories terminate after H steps and the agent is
placed at a new initial state.

We will occasionally be assuming stronger interaction protocols, namely that the agent
has the ability to “simulate” transitions in the MDP.

Assumption 2.3 (Resets). Like in the online setting, except that after experiencing a transi-
tion (s, a, r, s′) in the MDP, the agent can return to the state s. Syntactically, this is done via
the RESET() function.

Assumption 2.4 (Generative model). The learner is equipped with a “simulator” which can
query transitions (s, a, r, s′) from the MDP starting from any state action pair. Syntactically,
this is done via SIMULATE(s, a).

Part II

Is linearity of optimal values sufficient
for sample-efficient RL?
We begin our investigations into the theory of RL with function approximation by studying
the seemingly-simple case of linear function approximation. In linear function approxima-
tion, we model policies, values functions, or MDPs themselves as linear functions of some

4In the literature, vπ(µ0) is also denoted by J(π).
5Not to be confused with the setting of “online learning”, i.e. where the data arrives in an adversarial

order [11].
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given feature mapping. For reasons that will become clear, we will be focusing on the case
of approximating value functions (which we call linear value approximation to distinguish
from the more general setting). In this setting, the learner is provided with a feature map-
ping φ : S × A → Rd (for modelling action-value functions) or ψ : S → Rd (for modelling
state-value functions). The features can be used to approximate value functions as linear
functions via q̂(s, a) = ⟨φ(s, a), θ̂⟩. We can also write the linear prediction in vector form
as q̂ = Φθ̂, where Φ ∈ R(S·A)×d is the feature matrix whose (s, a)th row is φ(s, a).

The idea of using function approximation to help solving large-scale MDPs originates in
the 1960s [e.g., 10]: these early works provided experimental evidence that in MDPs with
large (or even infinite) state spaces, the optimal value function can be well approximated
with the linear combination of a few basis functions, which in turn encouraged work to
explore how such basis functions could be used to design efficient planning algorithms
whose compute cost is independent of the size of the state space and depends mildly on the
number of basis functions and the planning horizon. The seminal paper of Schweitzer and
Seidmann [12] gave general, “least-squares” versions of the basic dynamic programming
methods (value iteration, policy iteration and linear programming) that relied on the basis
functions. However, no analysis was provided.

It was not until the field began tackling the question of sample-efficiency in RL [13, 14,
15] that attention has been turned towards the problem of sample-efficient learning with
the help of linear features. As previously mentioned, some assumptions are required if one
wants to speed up the efficiency of recovering the optimal policy (again, one can imagine
the case where the features all map to 0). A realizability assumption in the linear setting
posits that the object of interest can be written as a linear function of the feature map. We
define below what it means for policies, value functions or MDPs to be linear.

Definition 2.5 (Linear realizability). Given a feature map φ : S ×A → R, we say that π⋆ is
linearly-realizable if

∃θ s.t. π⋆(s) ∈ argmaxa{φ(s, a), θ}. (8)

We say that q⋆ is linearly-realizable if

∃θ⋆ s.t q⋆(s, a) = ⟨φ(s, a), θ⋆⟩. (9)

We say that all value functions qπ are linearly-realizable if

∀π,∃θπ s.t. qπ(s, a) = ⟨φ(s, a), θπ⟩. (10)

We say that the MDP is linearly-realizable (or simply a linear MDP) if

∃θr &µ : S → Rd s.t. r(s, a) = ⟨φ(s, a), θr⟩&P (s′ | s, a) = ⟨φ(s, a), µ(s′)⟩. (11)

When these are assumptions do not hold, we can measure the degree to which they are
violated by looking at the distance (as measured by some metric) of the best linear ap-
proximation (e.g. for q⋆-realizability we may choose to define the approximation error as
infθ ∥Φθ − q⋆∥∞). It is relatively straightforward to show that these realizability assump-
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tions form a hierarchy, namely that:

(11) =⇒ (10) =⇒ (9) =⇒ (8)

It was shown by Du et al. [16] that Equation (8) is insufficient for sample-efficient RL,
even if one strengthens this assumption to include an Ω(1)-sized “margin” between the
best action and the second-best action. On the other hand, it was shown by Jin et al.
[17] and Lattimore et al. [18] respectively that Equation (11) and (10) are sufficient for
sample-efficient RL (for the latter, under the generative model setting). This left open the
basic question:

Question 2.6. Is realizability of the optimal action-value function enough to guarantee
sample-efficient learning?

We are operating under the canonical objective (Definition 1.2), meaning that we aspire
to find an algorithm with poly(d,H, 1/ε) complexity for recovering a ε-suboptimal policy.

Related works Positive results for this question have been obtained under a number of
additional assumptions. In the online setting, Wen and Roy [19] provides a low-regret
guarantee for deterministic MDPs (when both the rewards and transitions are determin-
istic). This was later extended to “low-variance” MDPs by [20] under an additional “gap
assumption”, which requires knowledge of the minimum separation (over all states) be-
tween the value of the optimal action and that of the second best action. Their sample
complexity also scales in the inverse of the gap, meaning that we can make it arbitrarily
large by adding a new action which is arbitrarily close to optimal. Several positive re-
sults have been obtained for linear MDPs [17, 21, 22, 23]. With a generative model, Du
et al. [24] give a query complexity result for the least-squares value iteration algorithm
which scales as O(poly(H, d)) provided that the inverse gap is a known parameter and is
itself O(poly(H, d)). Shariff and Szepesvári [25] and Zanette et al. [26] obtain polynomial
bounds under v⋆-realizability or q⋆-realizability with the additional assumption that all fea-
tures lie inside the convex hull of at most O(poly(H, d)) of the feature vectors. Du et al.
[27] gives a positive result under the condition that both q⋆ and v⋆ are linearly-realizable.
Zanette et al. [28] gives a positive result under the condition that the features satisfy a
so-called Bellman completeness condition, which posits that T qθ is itself linear for all linear
qθ (this assumption is implied by (11) and implies (9)). All of the above assumptions are
strictly stronger than just q⋆-realizability. A separate line of work [29, 30, 27, 31] estab-
lishes several complexity measures (e.g. the Bellman rank) for learning under arbitrary
realizable function classes, which subsumes linear function classes. However, their bounds
additionally scale with these complexity measures, and q⋆-linearity does not guarantee that
these complexity measures will be poly(d,H).

On the side of negative results, Du et al. [16] gave a partial answer to question 2.6 by
ruling out the case where the optimal value function is not realizable but is instead approx-
imately realizable, provided that the approximation error is large enough. More precisely,
they showed that if this approximation error is larger than Ω(

√
H/d), then there is an

exponential lower bound of Ω(min{ed, 2H}). In fact, this lower bounds continues to hold
even if we assume that all policies can be approximately realized with error greater than
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Ω(
√
H/d). However, this still left open the question whether realizability was sufficient in

the presence of no (or of more moderate) error.

3 An Exponential Lower Bound [Completed, ALT ’21]

Our first contribution [32] was a negative answer to the above question (Question 2.6).
Namely, we give an information-theoretic lower bound on the sample complexity of learning
with only linear optimal value functions. Let us recap the assumption.

Assumption 3.1 (Linear q⋆ realizability). Given φ : S ×A → Rd, ∃θ⋆ ∈ Rd s.t.

q⋆(s, a) = ⟨φ(s, a), θ⋆⟩ ∀(s, a) ∈ S ×A.

We further assume that maxs,a ∥φ(s, a)∥2 ≤ 1 and that ∥θ⋆∥2 ≤ B for some known B ∈ R.

The main theorem is the following.

Theorem 3.2 (Lower bound under q⋆-realizability [32]). For all d and H larger than some
constants, there exists a family of MDPs with horizon H and features of dimension d satisfying
Assumption 3.1 such that any algorithm which recovers a policy satisfying vπ̂(s0) ≥ v⋆(s0)−
9

128
will need a worst-case sample complexity of at least

Ω(min{ed, 2H}) (12)

This continues to hold even if the learner is equipped with a generative model (Assumption
2.4).

A (slightly weaker) lower bound also holds in the discounted setting.

Corollary 3.2.1 (Lower bound under q⋆-realizability, discounted version). For any γ ≥ 2
3
,

the sample complexity is lower bounded by eΩ(d).

In other words, we showed that there exists a family of MDPs whose optimal value
functions are linear but where any algorithm that returns a good solution will require
at least exponentially many samples either in d or in H. The lower bound holds for all
possible algorithms that claim to solve this problem, and applies even when the agent is
given a simulator of the environment. Thus, the lower bound also applies for the more
realistic “online” setting. This also implies hardness for learning with weaker function
approximation, such as with approximate realizability or realizability with function classes
that subsume linear functions (such as generalized linear models or neural networks).

Proof sketch We briefly sketch the main ideas for the lower bound construction in the
finite-horizon setting, but refer the reader to the paper for more precise definitions and
proofs of the following claims. See Figure 1 for an illustration. There are a large number
of actions, A ≈ ed. One of these actions is optimal, and is denoted by a⋆. (In reality,
we construct A different MDPs which are identical save for the identity of the optimal
action). The state space is an A-ary tree, and the transitions are deterministic (thus, we can
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identify each state by the sequence of actions it took to get there). We construct a Johnson-
Lindenstrauss set of vectors [33], i.e. an exponentially large set of vectors {vi} which all
satisfy ∥vi∥2 = 1 and |⟨vi, vj⟩| ≲ 1/2. We assign each of the actions one of these vectors
(vi = vai), and roughly define the features φ(sh+1, ah+1) = φ(a1:h, ah+1) ≈

∏h
i=1⟨vai , vai+1

⟩,
i.e. the inner product between all the vectors for the actions that it took to reach that state.
By near-orthogonality, we notice that the magnitude of the feature vectors roughly halves
at each iteration. The optimal parameter is taken to be the vector for a⋆, va⋆.

The reward function is identically zero unless: i) a⋆ is played, or ii) any action is played
at the final stage. In both cases, the reward given is the value of q⋆, which is linear. Thus,
since the features geometrically shrink, the magnitude of the rewards does as well. In
particular, at horizon H the rewards are of size ≈ 2−H . We further make the terminal
rewards Bernoulli random variables.

It remains to show linearity of q⋆ and statistical hardness of the MDP. The first point
is deferred to the paper. For the second, the intuition is that the learner must find a⋆,
and thus is forced to either a) try all of the actions to find the optimal one, or b) use
the simulator to query rewards from the last stage to deduce the identity of θ⋆ (this can
be done, in principle, since the rewards are linear). The first case evidently leads to an
exponential lower bound, since A ≈ ed. For the second case, recall that the rewards are
Bernoulli with mean ≈ 2−H , and thus it will take at least 2H samples before the learner
can observe the mean of the random variable to get information about θ⋆.

Discussion & subsequent work Our work was published at the ALT 2021 conference,
where it received the Best Student Paper Award. Our result was covered in tutorials on the
Theory of RL given at the Simons Institute (UC Berkeley) [link], FOCS 2020 [link], and
COLT 2021 [link], and it is now included in textbooks [34] and RL theory lecture notes
[link 1, link 2, link 3].

It is interesting to compare our result with several related but simpler settings. Our
bound entails three exponential separations, i.e. three pairs of settings where the statisti-
cal complexity is polynomial in one and exponential in the other: 1) realizability of the
value function for every policy [35] vs. realizability of only the optimal value function,
2) linearly-realizable bandits (i.e. single-horizon problems) [36] vs. longer-horizon prob-
lems, and 3) fully deterministic MDPs [19] vs. MDPs with deterministic transitions and
stochastic rewards. In all of the above settings, linear realizability of the optimal value
function alone entails the existence of a poly(d,H, 1

ε
) algorithm.

Our construction was adapted (and simplified) for the online setting (without a simu-
lator) by Wang et al. [37], where they showed that the lower bound continues to hold
even if we assume a constant-sized gap between the optimal value of the best action and
that of the second-best action (the gap in our construction is exponentially small). The
simplified construction was also used in [31]. Follow-up works by a subset of the au-
thors [38] improves the lower bound by modifying the construction so that it holds for
polynomially-sized action sets.
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Figure 1: Illustration of the construction for Theorem 3.2. Figure taken from [32]. The
states on the right belong to an A-ary tree. The dynamics are deterministic. Action a⋆

or actions that are repeated transition the agent to a “game-over state”, where no further
reward is given. Action a⋆ always gives a (large) positive reward. All actions at stage H
are positive to ensure realizability, but they are stochastic with exponentially small means
and thus hard to detect.

4 A Positive Result When There Are Few Actions [Com-
pleted, COLT ’21]

Motivation & problem setting We recall that the construction in our lower bound (The-
orem 3.2) had an exponentially large action set. Our next question was whether this was
necessary for hardness, or whether the construction could be improved to hold for smaller
action sets. A more general version of this question is to ask whether poly(d,H,A, 1/ε) was
possible. (Recall that A is the size of the action set). This guarantee is less desirable as the
size of the action set may be extremely large (and, in the limit, even continuous). Indeed,
in the three simpler settings just-mentioned (bandits, qπ-realizability for all π, and deter-
ministic MDPs), sample-efficient learning is possible regardless of the size of the action set:
the key is that all the actions are highly correlated via the feature mapping and realizabil-
ity of q⋆(s, a). Our previous lower bound states that this is no longer true once we remove
those simplifying assumptions. Nevertheless, this possibility of poly(d,H,A, 1/ε)-learning
was not ruled out since, in the setting where the number of actions is also a parameter of
interest, the lower bound becomes linear in A. Our second paper [39] finds that, under
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linear realizability, efficient learning is possible whenever the action set is “small”, namely
O(1).

Overview of contributions This paper considers the slightly different setting of v⋆-realizability.
Formally:

Assumption 4.1 (Linear v⋆ realizability). Given ψ : S → Rd, ∃θ⋆ ∈ Rd s.t.

v⋆(s) = ⟨ψ(s), θ⋆⟩ ∀s ∈ S.

We further assume that maxs ∥ψ(s)∥2 ≤ 1 and that ∥θ⋆∥2 ≤ B for some known B ∈ R.

We also assume the same interaction protocol as the lower bound, which is that the
learner is equipped with a generative model (Assumption 2.4). In fact, for this upper
bound, we can relax this assumption to the setting of resets (Assumption 2.3). Our work
derives the novel TENSORPLAN algorithm, which is sample-efficient whenever the action
set is O(1) (i.e. a constant independent of d or H). More formally:

Theorem 4.2 (Upper bound under v⋆-realizability [39]). Under v⋆-linearity (Assumption
4.1) and the presence of resets (Assumption 2.3), there exists an algorithm (TENSORPLAN)
which returns a ε-suboptimal policy after

poly(
(
dH

ε

)A

, B) (13)

interactions from the MDP.

When A is a constant (e.g. 2), this is the first statistically efficient algorithm when
using only the linear realizability of the optimal value function. In addition, our algorithm
works in a more robust setting: it will automatically approximate the best policy whose
value function is linear and furthermore extends to the case where said value function is
approximately linear (albeit with small misspecification, ≲ 1/

√
dAA). The algorithm also

can be shown to work (with the same complexity) for q⋆-realizability assuming that the
transitions in the MDP are deterministic. Unfortunately, while statistically efficient, it is
not known whether our algorithm can be made computationally efficient as well. While
well-behaved for small action sets, this algorithm’s general complexity is an exponential
function in the number of actions, which is not affordable in general.

Our algorithm is based on the principle of optimism under uncertainty, where the learner
explores by assuming the world is as nice as can be, in combination with a “local consis-
tency checking” mechanism to select hypotheses which satisfy the optimal value function
equations at the states seen so far. We bound the maximal number of trajectories that the
algorithm can execute via a novel tensorization scheme which could be of independent in-
terest. For ease of presentation, we will give a more complete description of the algorithm
in Section 5 after explaining the proceeding results.

Discussion, and subsequent work We have seen that TENSORPLAN is statistically effi-
cient (in d,H, and 1/ε) when A = O(1), but has an exponential-in-A complexity in general.
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On the other hand, we have seen that when A = O(exp(d)) then sample efficiency is im-
possible. This still left open the possibility of efficient learning when A = poly(d,H), or
more generally the possibility of poly(d,H,A, 1/ε)-efficient learning. Both of these ques-
tions were ruled out in subsequent work by Weisz et al. [40], who showed that even when
A ≈ min{d1/4, H1/2}, a (highly non-trivial) modification of the construction from Section
3 yields an exponential lower bound of 2Ω(min{d1/4,H1/2}) ≈ 2A. Thus, some exponential
dependence on the size of the action set is unavoidable in general. Our next work investi-
gated the same learning setting but in the presence of some additional “side-information”,
which we will see can remove this exponential barrier.

5 A Positive Result Using A Few Expert Demonstrations
[Completed, NeurIPS ’22]

Motivation & problem setting We notice that the MDPs we constructed for the lower
bound in Section 3 relied solely on hiding the identity of a single optimal action, and that
this action can be played from any state. Thus, solving this class of MDPs is tantamount
to discovering the identity of a single action. This property continues to hold in all of
the subsequent lower bounds for RL with realizable optimal value functions [37, 31]. This
suggests a particular structure which is present in q⋆-realizable MDPs, and we hypothesized
that a small amount additional “side information” (to help reveal the identity of this action)
would be highly beneficial for the learner. We investigated this intuition by formalizing the
problem of learning with v⋆-realizable features in the presence of some expert advice. This
strengthened interaction protocol is a stronger assumption compared to the two previous
papers (which only assumed a generative model or resetting capabilities), but we will see
that it enables polynomial sample complexities while making surprisingly-few inquiries to
the expert. In particular, we do not need to make stronger representational assumptions
from the features beyond v⋆-realizability, nor do we need to make structural assumptions
on the MDPs.

The problem setting is the following. We firstly assume that the learner has interactive
access to an expert policy π◦ which is deterministic.

Assumption 5.1 (Interactive expert). There is an oracle which can be queried at the current
state s, which returns the action π◦(s). Syntactically, the oracle is queried via the ORACLE(s)
function.

We denote by v◦ := vπ
◦ the value function of the expert policy π◦. We next assume that

this value function is linear:

Assumption 5.2 (v◦-linearity, with bounded features). The value function v◦ of the expert
is linear with known features ψ ∈ Rd, i.e.

v◦(s) = ⟨ψ(s), θ◦⟩, ∀s ∈ S, (14)

for some unknown θ◦ ∈ Rd. We further assume that ∥ψ(s)∥2 ≤ 1∀s and that ∥θ◦∥2 ≤ B for
some known B ∈ Rd.
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The third assumption is that, as before, the agent has access to resets (Assumption 2.3).
Our objective is the usual PAC-MDP objective (Objective 2.2), except that we generalize
it so that the learner is instead tasked with competing with v◦, the value function of the
expert. Namely, we wish for our algorithm to recover a policy π̂ which satisfies

vπ̂(µ0) ≥ v◦(µ0)− ε with probability ≥ 1− δ,

When π◦ = π⋆, this is of course the traditional objective. The reason for this generalization
is that π◦ may be arbitrarily uninformative if one wishes to compete with π⋆.6

Overview of contributions We derive a statistically and computationally efficient algo-
rithm (DELPHI) which only requires a small number of demonstrations from the expert
policy in addition to some polynomial amount of independent exploratory samples.

Theorem 5.3 (Upper bound under v◦-linearity and expert advice). Suppose Assumptions
5.1, 5.2, and 2.3 hold. Then the DELPHI algorithm will recover a policy π̂ such that vπ̂(µ0) ≥
v◦(µ0)− ε with probability ≥ 1− δ, using

O(d ln(B/ε)) oracle calls & Õ(d2H5AB4/ε4) samples from the MDP.

Furthermore this algorithm is computationally efficient.

Compared to pure RL approaches, this corresponds to an exponential improvement in
sample complexity with surprisingly-little expert input. Ignoring logarithmic factors, the
amount of oracle calls required is simply linear in d, the dimension of the feature mapping.
Furthermore, this amount is significantly smaller than prior IL approaches which require
the same dependence on d but additionally required at least linear factors of both H and
1/ε.

DELPHI will solve for a parameter θ̂ such that an induced policy πθ̂ (defined via Eq. (??))
will compete with the expert’s value function. Deploying the policy πθ̂ also requires the
RESET functionality, since expectations must be estimated from a small number of samples
at each state encountered. This is a consequence of our assumption that v◦ is linear (rather
than, e.g., q◦ or the MDP itself), since selecting actions based on state-value functions will
always require one-step look-aheads.

Towards establishing the optimality of our algorithm, we study the capabilities of expert-
augmented learners which have bounded exploration budgets. The question of optimality
is fairly complex, as the algorithms have adaptive access to two different resources that
they may interleave. We choose to focus on minimizing the number of expert queries, since
these may be significantly more costly than allowing the agent to explore on their own.
Thus, we ask:

Question 5.4. What is the minimal number of expert queries required by any algorithm
which has access to a polynomially-bounded exploration budget (in terms of d,H, and A)?

6For instance, we can imagine augmenting any MDP with a “dummy” action that achieves no reward, and
defining π◦ to always take that action.
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The reason that we place such a bound on the exploration budget is that we are min-
imizing the expert cost over all “sample-efficient” algorithms. In particular, without such
a bound, we are competing against algorithms that may exhaustively explore all states
and solve the MDP without referring to the expert. We choose to study arbitrary poly-
nomial complexities (rather than, say, the samples required by DELPHI) since it is a more
fundamental question about the limits of exploration in the presence of linearly-realizable
features. Our main lower bound is to show that any such learner will require at least
Ω̃(
√
d) oracle calls to recover a policy competing with the expert’s value function.

Theorem 5.5. There exists a family of MDPs, feature maps, and expert policies satisfying
Assumptions 5.1, 5.2, and 2.3, such that any algorithm with poly(d,H,A) exploration budget
will need at least

Ω̃(
√
d)

oracle calls to recover a policy such that vπ̂(s0) ≥ v◦(s0)− 0.01.

We also study the weaker setting where only the expert’s policy is linear (as in Equation
(8)), and show that in this setting the lower bound increases to Ω(d), matching our upper
bound up to logarithmic factors. It is a particularly interesting open question to resolve the
gap between the oracle complexity required by DELPHI (Õ(d)) and the one obtained from
our lower bound (Ω̃(

√
d)). We suspect that the looseness is on the lower bound side since

the construction is quite intricate, although if the lower bound is tight, then this implies
the intriguing possibility that we can find a different algorithm which uses only Õ(

√
d)

oracle calls (potentially at the cost of a higher exploration complexity).

Intuition for DELPHI We give an overview of the DELPHI algorithm. The full pseudo-code
is found in Algorithm 1 (with Algorithm 2 used as a sub-routine). Recall that the expert
policy π◦ satisfies v◦ = T π◦

v◦, and that this fixed point is unique. We say that a candidate
value function is consistent at a state s if it satisfies the Bellman equation at that state, i.e.
if v(s) = T π◦

v(s). Note that we need consistency to hold globally (i.e. at all states) in
order to ensure that v = vπ

◦. Our methodology is based on ensuring that consistency on a
small number of well-chosen states will guarantee global consistency.

DELPHI is inspired by the previous TENSORPLAN algorithm [39]. As in TENSORPLAN,
DELPHI proceeds via a “guess and check” procedure: at every iteration, we pick the op-
timistic linear parameter which is consistent on the past expert data that we have seen.
Letting vθ(·) := ⟨ψ(·), θ⟩ for any θ ∈ Rd, this means that at all states si where the expert has
previously been queried we verify that vθ(si) ≈ T π◦

vθ(si). Letting Θt denote the parame-
ters that are consistent at iteration t, the optimistic linear parameter is the one which solves
maxθ∈Θt vθ(µ0). We then check whether this choice of parameter is consistent, by playing
nrollout rollouts of length H with a policy derived from the parameter. More specifically,
for any θ the policy πθ takes the form

πθ(s) = argmina

∣∣∣(r̂(s, a) + Ês,a[vθ(s
′)]
)
− vθ(s)

∣∣∣ ,
After a certain number of rollouts, one of two things happen: either this policy encoun-

ters a state where there is no consistent action (i.e. the above minimum has a large value),
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or we only encounter states that are consistent.7 In the first case, we query the oracle for
its expert action and use the transition for that action to update the parameter set. In the
second case, we derive that if no inconsistencies are observed for several rollouts, then our
“virtual value” vθ is close to the true value under πθ. In particular:

Lemma 5.6 (Consistency implies accurate prediction (informal)). If nrollout rollouts of πθ
have occured without any inconsistencies, then vπθ(s0) ≈ vθ(s0).

Using that θ was optimistic (vθ ≥ maxθ′∈Θt vθ′, realizability of v◦ = vθ◦, and the fact that
θ◦ does not get eliminated from our “version space” Θt, this implies that we are optimal.

The only thing left to argue is that the number of iterations (i.e. the number of times that
we can continue finding new parameters which are not globally consistent) is small. For
this, we recall the direct product ⊕, which corresponds to “concatenating” two vectors, i.e.
for any two vectors u ∈ Rn and v ∈ Rm, we have u⊕ v = (u1, . . . , un, v1, . . . , vm)

⊤ ∈ Rn+m.
Using linearity of v◦, it turns out roughly d inconsistencies are sufficient to bound the
iteration complexity. To see this, note that we can re-write the Bellman equation for any
vθ(·) = ⟨ψ(·), θ⟩ as:

vθ(s) = T π◦
vθ(s) ⇐⇒ 0 = r(s, π◦(s)) + ⟨Es′∼P (s,π◦)[ψ(s

′)]− ψ(s), θ⟩
⇐⇒ 0 = ⟨∆s,π◦(s), 1⊕ θ⟩, (16)

where we have introduced the notation ∆s,a := r(s, a)⊕(E[ψ(s′)]− ψ(s)) and used linearity
of expectation, linearity of inner products, the definition of vθ, and the definition of the di-
rect product. We call the vector ∆s,a the temporal difference (TD) vector for (s, a). Equation
(16) is precisely an orthogonality constraint in d + 1 dimensions. Since the parameter θt
which is chosen at time t was consistent on past data, it is orthogonal to the previous t− 1
TD vectors which have been generated from interactions with the oracle. If we happen to
find a state which has no consistent action, then the TD vector corresponding to the expert
action at that state must not be in the span of the previous expert TD vectors (otherwise it
would be consistent). It follows that the iteration complexity is at most d + 1, since there
are at most d+ 1 linearly independent vectors in Rd+1. We use the Eluder dimension [41]
to generalize this argument to the case where the expectations are estimated.

Algorithm 2 measureTD
1: Inputs: s, a, ψ(·), n, RESET()
2: for i = 1 to n do
3: Play action a at s, receive sample Rl and S ′

l from MDP
4: ∆i ← Rl ⊕ (ψ(S ′

l)− ψ(s))
5: RESET()
6: end for
7: return ∆̂s,a :=

1
n

∑
i∈[n] ∆i

DELPHI vs. TENSORPLAN DELPHI is inspired by TENSORPLAN, and we can now describe
the differences. In the expert-less setting, TENSORPLAN instead aims to ensure that v(s) =

7Due to sampling errors, we tolerate some small amount of inconsistency during these checks.
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Algorithm 1 DELPHI

1: Inputs: s0, φ, sub-optimality εtarget, confidence δ, parameter bound B
2: Θ0 ← Ballℓ2(B) ▷ Θt : current consistent parameters
3: Initialize hyperparameters Ed, neval,nrollout, and εtol [see paper for precise values]
4: for t = 1 to Ed + 1 do
5: Pick θt ∈ argmaxθ∈Θt−1

(
vθ(s0) := θ⊤ψ(s0)

)
▷ Optimistic choice over Θt−1

6: consistent← true
7: for m = 1 to nrollout do ▷ nrollout number of rollouts with θt-induced policy
8: St,m,h = s0 ▷ Initialize rollout
9: for h = 1 to H do

10: for a ∈ [A] do ▷ For each action
11: ∆̂St,m,h,a ← measureTD(St,m,h, a, neval) ▷ Measure TD vector at (s, a)
12: end for
13: if mina

∣∣∣⟨∆̂St,m,h,a, 1⊕ θt⟩
∣∣∣ > εtol then ▷ No consistent action

14: consistent← false
15: a◦t ← ORACLE(St,m,h) ▷ Query oracle for π◦(St,m,h)
16: ∆̃St,m,h,a

◦
t
← measureTD(St,m,h, a

◦
t , 4Edneval) ▷ Refined data

17: Θt ← Θt−1 ∩ {θ | |⟨∆̃St,m,h,a
◦
t
, 1⊕ θ⟩| ≤ εtol} ▷ New admissible θs

18: Exit current iteration, t← t+ 1, Goto Line 5.
19: end if
20: At,m,h ← argmina∈[A]

∣∣∣⟨∆̂St,m,h,a, 1⊕ θt⟩
∣∣∣ ▷ Else consistent, keep playing

21: Play At,m,h, get Rt,m,h, St,m,h+1 ∼ MDP ▷ Roll forward
22: end for
23: end for
24: if consistent == true then
25: return θt ▷ No inconsistency for m rollouts =⇒ success
26: end if
27: end for
28: return θEd+1

T v(s) globally, so that v = v⋆. The above constraint is a maximum over actions (recall
Equation (4)), which we wish to avoid. We instead say that a value function is consistent at
a state s if there exists any action such that v(s) = r(s, a)+Es′∼P(s,a)[v(s

′)]. The version space
Θt is thus all consistent parameters on past transitions. We again proceed by optimism
over this new version space, and roll out the policy defined by (??). As before, if no
inconsistencies are observed, we can derive that vθ ≈ vπθ and thus vπθ ≥ v⋆ by optimism.
The last argument is to bound the number of iterations required. Following steps similar to
Equation (16), it holds that for the action which was consistent we have 0 = ⟨∆s,a, 1⊕ θ⟩.
The existence of a consistent action is thus equivalent to the product of these constraints:
0 =

∏
a∈A⟨∆s,a, 1 ⊕ θ⟩. We can write this in the tensor space as ⟨⊗a∆s,a,⊗a(1 ⊕ θ)⟩. This

corresponds to an orthogonality constraint in a (d + 1)A-dimensional space, and thus the
iteration complexity is bounded by (d+ 1)A by the same argument as before.

The extension of TENSORPLAN to the new setting naturally incorporates the expert
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demonstrations, while simultaneously (1) having low oracle requirements, (2) address-
ing the exponential sample complexity of TensorPlan, and (3) rendering the algorithm
computationally efficient.

Related works Our proposed setting can be solved by traditional (interactive) Imitation
Learning (IL) methods, although with worse rates. As in our setting, interactive IL consid-
ers the case where the learner has access to an expert oracle that can be queried adaptively.
It differs from our setting, however, since traditionally in IL the learner does not observe
reward information. We further differ from the IL setting since IL generally studies func-
tion approximation with policy classes and assume realizability of policies, whereas we
consider value function approximation. We further assume access to a RESET function. De-
spite that many demonstrations of interactive IL occur in simulated domains [42, 43, 44],
the benefits of this feature have not previously been studied. Our assumption of v◦ linearity
entails that many IL methods are not directly applicable. Indeed, the policy π◦ itself does
not need to be linear (despite that v◦ is), so it is unclear which policy class to use for those
algorithms. Assuming for the sake of comparison that linear policies can be used, IL meth-
ods would still obtain worse oracle rates. Indeed, using results from Agarwal et al. [34],
Behaviour Cloning (for the passive case) or AggreVaTe [44, 45] (for the interactive case)
have worst-case oracle complexities of N = O(dH4/ε2).8 This is in sharp contrast to our
O(d ln(1/ε)) oracle calls, which in independent of H and logarithmic in 1/ε, and demon-
strates the improvement due to exploration with the help of value-function approximation.
Beyond these approaches, another intuitive method would be to perform regression by do-
ing a Monte Carlo estimation for the value of v◦(s) for each s along a certain “good” set of
features which would be suitable for extrapolation. This would require collecting rollouts
from those states, which will again introduce a factor of H in the number of oracle queries.
Our algorithm instead finds a set of state-action pairs where the Temporal difference (TD)
errors (which we represent as vectors) span orthogonal directions. These can be estimated
with a single transition, and this "local fitting" approach is novel to the IL literature and
avoids the factors of H and 1/ε from previous works. In terms of linear structure in IL,
most relevant is the recent work of Rajaraman et al. [46], which, in the reward-free case,
assumes that the expert policy is linear. A sample complexity of Õ(dH/ε) is shown for
Behaviour Cloning in this case, again suffering from dependence on H and 1/ε, and no
lower bound is given.

Part III

Beyond the standard objectives
In the papers presented in the previous part (Part II), we have focused on finding the mini-
mal sufficient conditions which would enable tractable RL with linear function approxima-
tion. The main takeaway is that, without further structure, weak realizability assumptions
alone are insufficient for sample-efficient learning in the linear setting. Thinking beyond

8Those results hold for the discounted setting, so we applied the standard conversion H 7→ (1− γ)−1.
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the linear setting to more challenging (and practically relevant settings), this implies that
either

1. weaker guarantees need to be studied, and/or

2. more structure will be required.

In the sequel, we intend to study both of these points, through a variety of problem set-
tings where open questions remain. We begin by presenting completed work on the effects
of misspecification for the policy evaluation problem in RL (Section 6). We then propose
two interesting avenues for future research. Firstly, an investigation into redefining regret
and PAC objectives so as to make them meaningful in settings where one cannot recover
the optimal policy (Section 7). Secondly, a study into whether conditions which have been
shown to be necessary in offline RL can be leveraged as structural conditions for online RL
(Section 8).

6 Beyond Realizability: Optimal Misspecified Policy Eval-
uation [Completed, in submission]

Our first paper will begin by studying what happens when one removes the realizability
assumption, namely the general misspecified setting. In practice, realizability assumptions
rarely hold, and the degree to which they are violated is largely unknown. Thus, we
need algorithms that do not rely on the realizability assumption and whose guarantees
automatically scale with the degree of misspecification. When the ground truth solution
is not representable by the function class, a natural relaxed objective is to instead recover
the best-in-class solution, i.e. the function in the function class which is closest to the true
solution as measured by some norm. The “minimal” error incurred by the best-in-class
function is called the misspecification error. The ratio between the error of the attained
solution and that of the best-in-class solution is called the approximation ratio.

Existing error bounds for misspecified RL problems often suffer large multiplicative fac-
tors of this misspecification error in addition to other statistical errors [47], and it is rarely
the case that attention is brought to whether these blowup factors are necessary, or if the
ratios attained are optimal. In a myriad of easier settings (such as linear regression or em-
pirical risk minimization), it is indeed possible to recover an approximation factor of 1 (or
arbitrarily close to 1) [48, 49]. Whether or not similar guarantees are possible in RL prob-
lems, or what the optimal ratios would be, has been largely unstudied. Towards studying
this question, we formulate a simple offline RL problem with linear features, and examine
the optimal approximation ratio achieved by any estimator (even asymptotic ones).

Concretely, our learning problem is that of linear off-policy value function estimation in
infinite-horizon discounted MDPs. In this problem, the learner is given access to a feature-
map φ : S 7→ Rd and an offline dataset {(si, ri, s′i)}ni=1 of tuples collected using a fixed
policy in the MDP. The goal is to evaluate the value function of this policy. Since the policy
is fixed, we simply denote the value function as vM ∈ RS and the transition matrix as
P ∈ RS×S. The states si are sampled i.i.d. from an arbitrary (“off-policy”) distribution
µ. We also study the aliased setting where the dataset takes the form {φ(si), ri, φ(s′i)}ni=1,
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i.e. the states can only be observed through their feature mapping. We do not assume
anything about the off-policy distribution beyond that it yields a non-degenerate second
moment matrix. We also do not assume that the value function to be evaluated is linear
in the given feature mapping, and thus we formulate the task of the learner as simply
outputting the best possible linear approximation of the true value function (as measured
by some norm). Under misspecification, one often bounds the error of an estimator v̂ by
an oracle inequality of the form:

∥v̂ − vM∥ ≤ αn(M, µ, φ)︸ ︷︷ ︸
approximation factor

inf
θ
∥Φθ − vM∥︸ ︷︷ ︸

misspecification error

+ εn(M, µ, φ)︸ ︷︷ ︸
statistical error

, (17)

which holds either with high probability or in expectation. We will consider the limit of
infinite sample sizes, where the statistical error is zero, and can think of this as the case
when the learner is given the data-generating distribution (call it QM,µ,φ). A deterministic
asymptotic estimator is a map from distributions of the above form to linear functions over
the features. The approximation ratio exhibited by such an estimator is:

αv̂
∥·∥(M, µ, φ) =

∥v̂(QM,µ,φ)− vM∥
infθ ∥Φθ − vM∥

, (18)

with the convention that 0
0
= 1 and x

0
= ∞ whenever x > 0.9 We consider two natural

choices for the norms, the weighted L2(µ) norm and the L∞ norm (recall that µ is the
offline state distribution). For want of space, here we only the results for the L2(µ) norm.
In summary, our question is:

Question 6.1. What is the optimal asymptotic approximation factor for linear off-policy value
function estimation under misspecification?

Overview of contributions We provide both upper and lower bound results, with the
goal of pinning down the optimal approximation ratio for this problem. For upper bounds,
we analyze the well-known (off-policy) Least Squares Temporal Difference (LSTD) algo-
rithm [50], and provide exact characterizations of its error compared to the optimal linear
projection. Let us write D for the diagonal matrix with the entries of µ along its diagonal
(i.e. Ds,s = µ(s), for s ∈ S, and 0 otherwise), Σ := Φ⊤DΦ = Eµ[φ(s)φ(s)

⊤] for the second-
moment matrix, and Πµ = ΦΣ−1Φ⊤D for the L2(µ) projection operator. At the population
level, the LSTD estimator θLSTD is defined as:

A := Φ⊤D(I − γP )Φ = Es,s′
[
φ(s)(φ(s)− γφ(s′))⊤

]
(19)

b := Φ⊤Dr = Es∼µ [φ(s)r(s)] (20)
θLSTD := A−1b , vLSTD = ΦθLSTD , (21)

whenever A is invertible. Our result is a tight instance-dependent approximation factor for
LSTD.

9We do not need to consider random asymptotic estimators since Jensen’s inequality tells us that deter-
ministic estimators are optimal.
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Theorem 6.2. Assume that the A matrix from Equation (19) is invertible. Then the popula-
tion LSTD estimator of Equation (21) has an approximation factor upper bound of

αLSTD
µ ≤

√
1 +

(
γ∥ΦA−1Φ⊤DP∥µ

)2
≤

√√√√1 +

(
γ

∥ΠµP∥µ
σmin(Σ−1/2AΣ−1/2)

)2

(22)

The bound involves two problem-dependent terms (∥ΠµP∥µ and σmin(Σ
−1/2AΣ−1/2)),

which gives two “failure modes” where this estimator can have large approximation ratios.
In the aliased case, we can give an instance-dependent lower bound to show that the
approximation factor of LSTD is roughly optimal.

Theorem 6.3. In the aliased setting, ∀x ∈ [1,∞], ∀y ∈ (0, 1
2
), there exists a collection

of two instances M = {(M1, µ1, φ1), (M2, µ2, φ2)} which both satisfy ∥ΠµP∥µ = x and
σmin(Σ

−1/2AΣ−1/2) = y and generate the same data distribution Q, yet any estimator v̂ will
satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) ≥

√
1 + γ2

∥ΠµP∥2µ − 1

σ2
min(Σ

−1/2AΣ−1/2)
(23)

When x >
√
2, then the upper bound (Eq. (22)) and the lower bound (Eq. (23)) differ

by at most a multiplicative factor of 2. Thus, in this regime of the instance-dependent
parameters, LSTD attains the asymptotically optimal approximation ratio up to constant
factors. Our domain restrictions on x and y in the lower bound statement also do not
preclude the interesting asymptotics of the problem, i.e. the cases where ∥ΠµP∥µ is large
(→∞) or σmin(Σ

−1/2AΣ−1/2) is small (→ 0).
The previous result heavily relies on the aliased nature of the problem. In the non-

aliased case, the learner can still use the LSTD algorithm, so the upper bound of Theorem
6.2 still holds. For the lower bounds, the class of learners that we are competing against
now have more information. We conjecture that the bound in Equation (22) remains opti-
mal, but this remains open. We instead show the weaker results that both of our instance-
dependent factors appearing in Equation (22) are independently necessary, meaning that
the finiteness of one alone does not guarantee a finite approximation ratio.

Lemma 6.4 (∥ΠµP∥µ is necessary). In the non-aliased setting, there exists a family of in-
stances M = {(M, µ, φ)} which all have an L2(µ)-misspecification of 0, σmin(Σ

−1/2AΣ−1/2) >
0, and ∥ΠP∥µ =∞, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) =∞

This example illustrates the interpretation that ∥ΠµP∥µ intuitively captures the main
source hardness in value function estimation. Namely, it is large (or infinite) when there
is a lack of “pushforward” coverage [51], meaning that a state s ∈ supp(µ) may transition
to a state s′ /∈ supp(µ). Since the value at s depends on the value at s′, we may not be able
to predict vM(s) even under realizability. Our next result shows that, surprisingly, this is
not the only source of hardness in the off-policy value estimation problem.
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Lemma 6.5 (σmin(Σ
−1/2AΣ−1/2) is necessary). In the non-aliased setting, there exists a fam-

ily of instances {(M,µ, φ)} which all have an L2(µ)-misspecification of 0, ∥ΠµP∥µ <∞, and
σmin(Σ

−1/2AΣ−1/2) = 0, yet any estimator v̂ will satisfy

sup
(M,µ,φ)∈M

αv̂
µ(M, µ, φ) =∞

While it may appear surprising that the invertibility of some LSTD-specific quantity (the
A matrix) can dictate the hardness of value function estimation for all estimators, the
intuition is that A = 0 implies that the linear subspace {vθ = Φθ}θ can live completely
inside of the space of plausible value functions that can be chosen by the environment.
In the general case where A is nonzero, its minimum singular value dictates the “angle”
between these subspaces, and a small angle indicates a large approximation error (see
Figure 2). In conclusion, we have shown that ∥ΠµP∥ <∞ and σmin(Σ

−1/2AΣ−1/2) > 0 are
both independently necessary for finite approximation factors in value function estimation
under the L2(µ) norm. The paper also derives analogous results for optimal approximation
factors in the L∞ norm.
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Figure 2: Illustration of lemma 6.5. Plane: possible value functions that can be chosen
without giving information to the learner. Line: possible linear predictors (d = 1). True
value function: v. Best estimator: v̂. The angle β controls the approximation ratio, which
is α = ∥v̂ − v∥/∥v′ − v∥. In our construction, β is controlled by the magnitude of A, and
β = 0 (line in the plane) implies α =∞.

Related works The only prior work studying the optimality approximation factors for
this problem showed that LSTD was optimal in the setting where µ is the stationary distri-
bution of P (the on-policy setting) and for sample sizes smaller than the size of the state
space [52].10 In particular, no prior work exists on characterizing the necessary blowup of
the misspecification error in the off-policy case, even that which is asymptotically achiev-
able. Recent works [53, 54] have provided some negative results for this problem in the
realizable setting which demonstrate that the optimal linear approximation may not be
recovered in the worst-case (in our language, this corresponds to approximation factors of
+∞). Our results explain these hardness results as well as providing new ones.

10In the on-policy setting, it is possible to asymptotically a ratio of 1 under the L2(µ) norm.
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In terms of upper bounds to the approximation ratio, Tsitsiklis and Van Roy [55] give
the classical approximation ratio bound of 1/

√
1− γ2 for the on-policy case, which uses

the fact that P (and thus ΠµP ) are contractive in the L2(µ) norm when µ is the stationary
distribution. The bound of 1/

√
1− γ2 is sharpened in an instance-dependent fashion by

Yu and Bertsekas [56] and Mou et al. [52], which both consider the more general problem
of solving projected fixed point equations. The above approximation bounds are similar to
our Theorem 6.2, although our proof relies on a simpler and exact error decomposition.
Our proof also enables us to obtain L∞ bounds, whereas all prior bounds are in the L2(µ)
norm.

7 Beyond Optimality: Optimally Suboptimal Bandits [Pro-
posed]

Our first proposed work will study provable methods in settings where optimality is pro-
hibitive. There are no shortage of such settings (we have already seen some in Part II).
With nonlinear function approximation schemes, such as neural networks, the situation is
even more dire. In particular, a relatively simple construction by Dong et al. shows that
even for bandits which are realizable by a single ReLU function, any algorithm will require
Ω(min{A, exp(d)}) samples to return a good action. This hardness is intrinsically tied to the
fact that in bandits and in RL we are tasked with recovering the optimal arm/policy. How-
ever, realizability within even just a single ReLU node allows the features to be essentially
uninformative for detecting the location of the optimal arm, thus requiring the learner to
essentially try all of the arms (A) or try all of the functions (exp(d), after discretization).

We want to develop a theory for such cases which does not require “assuming the prob-
lem away”. We will do so by studying if it is possible to meaningfully re-define the standard
objectives. The guiding intuition is that the quality of our exploration algorithm should be
measured against that of the best other exploration algorithm which could’ve been used.
To formalize this, it is more practical to think in terms of regret. Traditionally, the T -step
regret of an algorithm in MDPM is defined as

Reg(M, T ) = Tv⋆(µ0)− E[
T∑
t=1

vπt(µ0)], (24)

where πt is the sequence of policies played by the algorithm. However, in many practical
scenarios, optimality is not achievable with a realistic number of samples, which means
that the regret will essentially be linear in T (the worst possible) unless T exceeds some
unrealistic range (e.g. greater than all state-action pairs). Despite that all algorithms
experience linear regret, we should not consider them equal.

Our proposal is to view the first term above (Tv⋆(µ0)) as the total reward obtained by
a “competing” algorithm which has more information about M than we do, namely the
identity of the optimal policy. The optimal competing algorithm which knows the identity
of the optimal policy is clearly to play this policy at every round. With this perspective,
we can relax the definition of regret by restricting the amount of information given to the
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competing optimal algorithm. Loosely, this weaker notion can be defined as

Reg(M, T ) = sup
A∈Π⋆(M)

E

[
T∑
t=1

(
vπ

A
t (µ0)− vπt(µ0)

)]
, (25)

where Π⋆(M) is the set of algorithms A (the “adversaries”) which are given certain addi-
tional information about M, and πA

t is the set of policies played by this algorithm. This
definition is easily seen to generalize the previous one.

We instantiate this idea by examining the simple case of (tabular) stochastic k-armed
bandits. Evidently, no algorithm can achieve sublinear regret (as traditionally defined) on
a bandit unless T is larger than k. We propose to study the case where the number of
arms is much larger than the available number of pulls, even taking the limit of k → ∞.
Existing results for many-armed bandits measure regret against the optimal arm, and thus
are forced to make structural assumptions to achieve sub-linear regret [58, 59, 60]. We
seek to make no assumptions on the bandits, but instead to find adversaries which one
can reasonably compete against. A natural proposal for the case of the tabular k-armed
bandit is to consider the adversaries which know the distributions of all the arms but are
given an unknown permutation of the arms. In the limit of infinite arms, this is equivalent
to assuming that each new arms arm is sampled i.i.d. from some reservoir distribution
of arms. We exploited this perspective to write (25) as an optimal stopping problem with
unknown distributions. This problem is similar yet notably distinct from other stopping
time problems such as the prophet inequality [61]. Our results so far have established
that this adversary may be too strong still, namely we have shown that the worst-case
regret can still be linear. We then showed that this can be solved by considering additional
instance-dependent terms related to the reservoir distribution, but the tightness of these
terms remains to be seen. We are also investigating possibilities for an even weaker class
of adversaries.

Overall, we hope that this perspective opens the way to thinking about several other
exciting settings, such as the ReLU bandit model mentioned earlier, or even the simpler
case of misspecified linear bandits where negative results still exist [35].

8 Leveraging Connections Between Online RL and Offline
RL [Proposed]

In this section, we will be considering the much more general setting of arbitrary func-
tion classes F . When the function class lack useful structure such as linearity, it is easy
to construct instances that exhibit a lower bound of min{|F|, AH} [34]. In recent years,
a line of work [29, 30, 27, 31] has established several complexity measures for the hard-
ness of RL with arbitrary function classes. The complexity measures can be viewed as
instance-dependent terms (depending on the MDP and the function class) which capture
the hardness of that problem. These works provide sample complexity bounds which scale
in the canonical parameters (log |F|, H, and 1/ε) as well as in the complexity measure.

In a parallel line of work from offline RL, it has been recognized that a certain no-
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tion of coverage is required from the offline data distribution. In its basic form, this
condition roughly asserts that the data distribution covers all states which could be vis-
ited by policies in the MDP. More formally, the concentrability coefficient is defined as
Cconc(µ) := supπ

∥∥∥dπ

µ

∥∥∥
∞

, where dπ is the state visitation distribution under π. This quantity

plays a fundamental role for sample complexity analyses in offline RL [47, 62].
The recent work of Xie et al. [63] merged these two lines of work by establishing that

the mere existence of a data distribution with good concentrability is in itself a structural
condition that enables sample-efficient learning in online RL. Their works assumes real-
izability as well as a much stronger completeness condition, which assumes that T f ∈ F
for all f ∈ F . Their sample complexity scales with the best concentrability coefficient
amongst all data distributions, Ccov := infµCconc(µ). Interestingly, the learner does not
know or directly attempt to find this data distribution.

We seek to improve the results of this paper, by asking whether a similar result holds
without completeness, namely only with realizability and the existence of a covering dis-
tribution. Our preliminary results so far indicate that a positive result can be obtained if
we assume stronger realizability conditions which are also common in the offline RL liter-
ature, namely that of value function realizability AND weight function realizability [64].
We are still investigating whether the weaker value function realizability on its own is
sufficient (we suspect that it is not).
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